Envisioning a sustainable biorefinery requires reliable information on the sustainable availability of biomass, optimal plant location and delivered cost. In this paper, we have developed an integrated Geographic Information System (GIS) based sustainable biomass assessment, site optimization and supply logistics cost model to assess the spatial and temporal availability of crop residues, to identify optimal plant sites and to calculate the delivered cost. The grid-level (30x30m) assessment model was developed for crop residues using three primary sustainability indicators: (1) Soil Erosion (SE), (2) Soil Conditioning Index (SCI) and (3) Crop residue yield ≥ 2.5 dry Mg/ha. The Artificial Neural Networks (ANNs) prediction models for each indicator were developed and implemented in the GIS platform to estimate SE and SCI values to assess sustainably available crop residues. A multi-criteria geospatial analysis was used to identify suitable plant sites. GIS-based location-allocation model was used to site biorefineries/plants at optimal locations and generate feedstock supply curves. The developed model was demonstrated with the sustainable assessment of cotton stalk (CS) to produce fuel pellets in the study region (Georgia, USA). The model has estimated that about 1.6 million dry Mg of CS is available
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.