Airway hyperresponsiveness is a key feature of asthma, but its mechanisms remain poorly understood. Leukotriene D(4) (LTD(4)) is one of the few molecules capable of producing airway hyperresponsiveness. In this study, LTD(4), but not leukotriene C(4) (LTC(4)), produced a leftward displacement of the concentration-response curve to histamine in bovine airway smooth muscle strips. Neither LTC(4) nor LTD(4) modified the concentration-response curve to carbachol. In simultaneous measurements of intracellular Ca(2+) ([Ca(2+)](i)) and contraction, histamine or carbachol produced a transient Ca(2+) peak followed by a plateau, along with a contraction. LTD(4) increased the histamine-induced transient Ca(2+) peak and contraction but did not modify responses to carbachol. Enhanced responses to histamine induced by LTD(4) were not modified by staurosporine or chelerythrine but were abolished by genistein. Western blot showed that carbachol, but not histamine, caused intense phosphorylation of extracellular signal-regulated kinase 1/2 and that LTD(4) significantly enhanced the phosphorylation induced by histamine, but not by carbachol. L-type Ca(2+) channel participation in the hyperresponsiveness to histamine was discarded because LTD(4) did not modify the [Ca(2+)](i) changes induced by KCl. In tracheal myocytes, LTD(4) enhanced the transient Ca(2+) peak induced by histamine (but not by carbachol) and the sarcoplasmic reticulum (SR) Ca(2+) refilling. Genistein abolished this last LTD(4) effect. Partial blockade of the SR-ATPase Ca(2+) pump with cyclopiazonic acid reduced the Ca(2+) transient peak induced by histamine but not by carbachol. These results suggested that LTD(4) induces hyperresponsiveness to histamine through activation of the tyrosine kinase pathway and an increasing SR-ATPase Ca(2+) pump activity. L-type Ca(2+) channels seemed not to be involved in this phenomenon.
Our data suggested that beta1-integrin shedding produced by repetitive allergen challenges in guinea-pigs was associated with collagen deposition in SER of bronchi and bronchioles, along with inflammatory cells infiltration and AI-AHR development.
No single immunological test may definitively distinguish pigeon HP from AB and other interstitial lung disorders; however, positive RF, together with high AA levels, seems to be useful in differentiating the diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.