We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity functions at z = 4 to 8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1-2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 ×10 6 Mpc 3 over this epoch, allowing us to perform a robust search for faint (M UV = −18) and bright (M UV < −21) highredshift galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 candidate galaxies at 3.5 < z < 8.5, with >1000 galaxies at z ≈ 6 -8. We measure both a stepwise luminosity function for candidate galaxies in our redshift samples, as well as a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright candidate galaxies at z ≥ 6. Our best-fit value of the characteristic magnitude M * UV is consistent with −21 at z ≥ 5, different than that inferred based on previous trends at lower redshift, and brighter at ∼2σ significance than previous measures at z = 6 and 7 (Bouwens et al. 2007(Bouwens et al. , 2011b. At z = 8, a single powerlaw provides an equally good fit to the UV luminosity function, while at z = 6 and 7, an exponential cutoff at the bright end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in M * UV is consistent with models where the impact of dust attenuation on the bright end of the luminosity function decreases at higher redshift, though a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by integrating our observed luminosity functions to M UV = −17, correcting for dust attenuation, and find that the SFR density declines proportionally to (1+z) −4.3±0.5 at z > 4, consistent with observations at z ≥ 9. Our observed luminosity functions are consistent with a reionization history that starts at z 10, completes at z > 6, and reaches a midpoint (x HII = 0.5) at 6.7 < z < 9.4. Finally, using a constant cumulative number density selection and an empirically derived rising star-formation history, our observations predict that the abundance of bright z = 9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z ∼ 10 galaxies.
We present galaxy stellar mass functions (GSMFs) at z = 4-8 from a rest-frame ultraviolet (UV) selected sample of ∼4500 galaxies, found via photometric redshifts over an area of ∼280 arcmin 2 in the CANDELS/GOODS fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data yet-to-date and the relatively large volume allow us to place a better constraint at both the lowand high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the restframe UV absolute magnitude at 1500Å (M UV ) and logarithmic stellar mass (log M * ) that holds for galaxies with log(M * /M ) 10. We use simulations to validate our method of measuring the slope of the log M * -M UV relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z = 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the log M * -M UV distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from α = −1.55 +0.08 −0.07 at z = 4 to α = −2.25 +0.72 −0.35 at z = 8. The inferred stellar mass density, when integrated over M * = 10 8 -10 13 M , increases by a factor of 10 +30 −2 between z = 7 and z = 4 and is in good agreement with the time integral of the cosmic star formation rate density. HST Data and Sample SelectionThe galaxy sample employed in this study is from Finkelstein et al. (2015), to which we refer the reader for full details of the HST data used and the galaxy sample selection. This sample consists of ∼7000 galaxies selected via photometric redshifts over a redshift range of z = 3.5-8.5. These galaxies were selected using HST
We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Nearinfrared Deep Extragalactic Legacy Survey (CANDELS) project. We combine the effort from ten different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ∼80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age < 100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for < 20 Myr sources) if nebular contribution is ignored.
We investigate the relation between star formation rate (SFR) and stellar mass (M), i.e. the Main Sequence (MS) relation of star-forming galaxies, at 1.3 ≤ z < 6 in the first four HST Frontier Fields, based on rest-frame UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to log M/M ⊙ ∼ 7.5 at z 4 and log M/M ⊙ ∼ 8 at higher redshifts, a factor of ∼10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting larger variety of star formation histories in low mass galaxies. This trend agrees with theoretical predictions, and is explained as either a consequence of the smaller number of progenitors of low mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.
Context. The form and evolution of the galaxy stellar mass function (GSMF) at high redshifts provide crucial information on star formation history and mass assembly in the young Universe, close or even prior to the epoch of reionization. Aims. We used the unique combination of deep optical/near-infrared/mid-infrared imaging provided by HST, Spitzer, and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5 ≤ z ≤ 7.5. Methods. We used the HST WFC3/IR near-infrared imaging from CANDELS and HUDF09, reaching H 27−28.5 over a total area of 369 arcmin 2 , in combination with associated deep HST ACS optical data, deep Spitzer IRAC imaging from the SEDS programme, and deep Y and K-band VLT Hawk-I images from the HUGS programme, to select a galaxy sample with high-quality photometric redshifts. These have been calibrated with more than 150 spectroscopic redshifts in the range 3.5 ≤ z ≤ 7.5, resulting in an overall precision of σ z /(1 + z) ∼ 0.037. With this database we have determined the low-mass end of the high-redshift GSMF with unprecedented precision, reaching down to masses as low as M * ∼ 10 9 M at z = 4 and ∼6 × 10 9 M at z = 7. Results. We find that the GSMF at 3.5 ≤ z ≤ 7.5 depends only slightly on the recipes adopted to measure the stellar masses, namely the photometric redshifts, the star formation histories, the nebular contribution, or the presence of AGN in the parent sample. The low-mass end of the GSMF is steeper than has been found at lower redshifts, but appears to be unchanged over the redshift range probed here. Meanwhile the high-mass end of the GSMF appears to evolve primarily in density, although there is also some evidence of evolution in characteristic mass. Our results are very different from previous mass function estimates based on converting UV galaxy luminosity functions into mass functions via tight mass-to-light relations. Integrating our evolving GSMF over mass, we find that the growth of stellar mass density is barely consistent with the time-integral of the star formation rate density over cosmic time at z > 4. Conclusions. These results confirm the unique synergy of the CANDELS+HUDF, HUGS, and SEDS surveys for the discovery and study of moderate/low-mass galaxies at high redshifts, and reaffirm the importance of space-based infrared selection for the unbiased measurement of the evolving GSMF in the young Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.