Commercial production of intracellular microalgal metabolites requires the following: (1) largescale monoseptic production of the appropriate microalgal biomass; (2) recovery of the biomass from a relatively dilute broth; (3) extraction of the metabolite from the biomass; and (4) purification of the crude extract. This review examines the options available for recovery of the biomass and the intracellular metabolites from the biomass. Economics of monoseptic production of microalgae in photobioreactors and the downstream recovery of metabolites are discussed using eicosapentaenoic acid (EPA) recovery as a representative case study. D
Lutein is an antioxidant that has gathered increasing attention due to its potential role in preventing or ameliorating age-related macular degeneration. Currently, it is produced from marigold oleoresin, but continuous reports of lutein-producing microalgae pose the question if those microorganisms can become an alternative source. Several microalgae have higher lutein contents than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis. Microalgae and marigold are opposite alternatives in the use of resources such as land and labor and the prevalence of one or the other could change in the future as the lutein demand rises and if labor or land becomes more restricted or expensive in the producing countries. The potential of microalgae as a lutein source is analyzed and compared to marigold. It is suggested that, in the current state of the art, microalgae could compete with marigold even without counting on any of the improvements in microalgal technology that can be expected in the near future.
A dynamic model of photosynthesis is developed, accounting for factors such as photoadaptation, photoinhibition, and the "flashing light effect." The model is shown to explain the reported photosynthesisirradiance responses observed under various conditions (constant low light, constant intense irradiance, flashing light, diurnal variation in irradiance). As significant distinguishing features, the model assumes: (1) The stored photochemical energy is consumed in an enzymemediated process that obeys Michaelis-Menten kinetics; and (2) photoinhibition has a square-root dependence on irradiance. Earlier dynamic models of photosynthesis assumed a first-order dependence of photoinhibition on irradiance and different kinetics of consumption of the stored energy than used in this work. These earlier models could not explain the photosynthesis-irradiance behavior under the full range of irradiance scenarios-a shortcoming that is overcome in the model developed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.