A dynamic model of photosynthesis is developed, accounting for factors such as photoadaptation, photoinhibition, and the "flashing light effect." The model is shown to explain the reported photosynthesisirradiance responses observed under various conditions (constant low light, constant intense irradiance, flashing light, diurnal variation in irradiance). As significant distinguishing features, the model assumes: (1) The stored photochemical energy is consumed in an enzymemediated process that obeys Michaelis-Menten kinetics; and (2) photoinhibition has a square-root dependence on irradiance. Earlier dynamic models of photosynthesis assumed a first-order dependence of photoinhibition on irradiance and different kinetics of consumption of the stored energy than used in this work. These earlier models could not explain the photosynthesis-irradiance behavior under the full range of irradiance scenarios-a shortcoming that is overcome in the model developed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.