Facial expression recognition is related to the automatic identification of affective states of a subject by computational means. Facial expression recognition is used for many applications, such as security, human-computer interaction, driver safety, and health care. Although many works aim to tackle the problem of facial expression recognition, and the discriminative power may be acceptable, current solutions have limited explicative power, which is insufficient for certain applications, such as facial rehabilitation. Our aim is to alleviate the current limited explicative power by exploiting explainable fuzzy models over sequences of frontal face images. The proposed model uses appearance features to describe facial expressions in terms of facial movements, giving a detailed explanation of what movements are in the face, and why the model is making a decision. The model architecture was selected to keep the semantic meaning of the found facial movements. The proposed model can discriminate between the seven basic facial expressions, obtaining an average accuracy of 90.8±14%, with a maximum value of 92.9±28%.
Microvasculature analysis in biomedical images is essential in the medical area to evaluate diseases by extracting properties of blood vessels, such as relative blood flow or morphological measurements such as diameter. Given the advantages of Laser Speckle Contrast Imaging (LSCI), several studies have aimed to reduce inherent noise to distinguish between tissue and blood vessels at higher depths. These studies have shown that computing Contrast Images (CIs) with Analysis Windows (AWs) larger than standard sizes obtains better statistical estimators. The main issue is that larger samples combine pixels of microvasculature with tissue regions, reducing the spatial resolution of the CI. This work proposes using adaptive AWs of variable size and shape to calculate the features required to train a segmentation model that discriminates between blood vessels and tissue in LSCI. The obtained results show that it is possible to improve segmentation rates of blood vessels up to 45% in high depths (≈900 μm) by extracting features adaptively. The main contribution of this work is the experimentation with LSCI images under different depths and exposure times through adaptive processing methods, furthering the understanding the performance of the different approaches under these conditions. Results also suggest that it is possible to train a segmentation model to discriminate between pixels belonging to blood vessels and those belonging to tissue. Therefore, an adaptive feature extraction method may improve the quality of the features and thus increase the classification rates of blood vessels in LSCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.