Boron-containing materials exhibit a unique combination of ceramic and metallic properties that are sensitively dependent on their given chemical bonding and elemental compositions. However, determining the composition, let alone bonding, with sufficient accuracy is cumbersome with respect to boron, being a light element that bonds in various coordination.Here, we report on the comprehensive compositional analysis of transition-metal diboride (TMBx) thin films (TM = Ti, Zr, and Hf) by energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), time-of-flight elastic recoil detection analysis (ToF-ERDA), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). The films are grown on Si and C substrates by dc magnetron sputtering (DCMS) from stoichiometric TMB2 targets and have hexagonal AlB2-type columnar structures. EDX considerably overestimates B/TM ratios, x, compared to the other techniques, particularly for ZrBx. The B concentrations obtained by XPS strongly depend on the energy of Ar + ions used for removing surface oxides and
A 6H‐SiC single crystal implanted in channeling mode by 4‐MeV C+3 and Si+3 ions at various doping levels has been examined by scanning electron microscopy (SEM) and micro‐Raman spectroscopy in order to study the lattice distortions inflicted by the impinging ions. C ions create zones of strongly damaged regions, parallel to the front face of the wafer with width increasing with the amount of doping. As expected, Si has induced considerably more lattice distortions than C, and more than one order of magnitude less doping induces apparently the same effect as C. Despite the large laser spot size compared with the boundaries of the distorted regions, micro‐Raman data provided results agreeing with the SEM pictures and the Monte Carlo calculations using the SRIM‐2013 software. From the evolution of the crystalline peaks in the Raman spectra obtained across the damaged area, one can conclude that the impinging ions do not accommodate as defects in the lattice but mostly displace the ions breaking the bonds and destroying the long range order. The spatial correlation model that takes into consideration the intensity variation at the laser spot and the anticipated from Monte Carlo calculations for the collision events can reproduce the trend of the strong transversal optical phonon width indicating nanocrystallites of a few nanometers size in the most damaged area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.