We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.
Anthracnose disease of avocado contributes to a huge loss of avocado fruits due to postharvest rot in Kenya. The causal agent of this disease has not been clear but presumed to be Colletotrichum gloeosporioides as reported in other regions where avocado is grown. The fungus mainly infects fruits causing symptoms such as small blackish spots, “pepper spots,” and black spots with raised margin which coalesce as infection progresses. Due to economic losses associated with the disease and emerging information of other species of fungi as causal agents of the disease, this study was aimed at identifying causal agent(s) of the disease. A total of 80 fungal isolates were collected from diseased avocado fruits in Murang'a County, the main avocado growing region in Kenya. Forty-six isolates were morphologically identified as Colletotrichum spp. based on their cultural characteristics, mainly whitish, greyish, and creamish colour and cottony/velvety mycelia on the top side of the culture and greyish cream with concentric zonation on the reverse side. Their spores were straight with rounded end and nonseptate. Thirty-four isolates were identified as Pestalotiopsis spp. based on their cultural characteristics: whitish grey mycelium with black fruiting structure on the upper side and greyish black one on the lower side and septate spores with 3-4 septa and 2 or 3 appendages at one end. Further molecular studies using ITS indicated Colletotrichum gloeosporioides, Colletotrichum boninense, and Pestalotiopsis microspora as the causal agents of anthracnose disease in avocado. However, with this being the first report, there is a need to conduct further studies to establish whether there is coinfection or any interaction thereof.
A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.
Infection and spread of Phaeoisariopsis griseola in the leaf of bean (Phaseolus vulgaris) were investigated by scanning and transmission electron microscopy. Conidia of P. griseola germinated by releasing a germ tube either at one end of the conidia or both ends. The germ-tube growth followed the contours of epidermal cells. The fungus entered the leaf through the stomata and grew mainly intercellularly between mesophyll and palisade cells. The chloroplast envelope and plasma membrane of adjacent cells disintegrated, lost structural integrity and dried out. Hyphae did not penetrate host cells. A stroma subsequently formed on the leaf surface. Conidiophores elongated under favourable conditions forming synnemata with conidia at the tips of conidiophores. Conidiophores also emerged through stomata.
Aflatoxins are a major problem in Eastern Province of Kenya and Aspergillus flavus has been associated with frequent outbreaks of aflatoxicoses in this region. This study evaluated the efficacy of 15 selected medicinal plants from Eastern Kenya against A. flavus. Different concentrations of 1000mg/ml, 750mg/ml and 400mg/ml using Agar Well Diffusion Method were used. Plants found to have inhibition zones of more than 10mm at 400mg/ml had their bark further assayed for antifungal activity. Both the leaf and bark extracts that were found to be effective were assayed for minimum inhibition concentrations (MIC) and minimum fungicidal concentrations (MFC) using Sabouraund Dextrose broth (SDB) micro-dilution method. The methanolic leaf and bark extracts of the fifteen plants assayed displayed concentration depended antifungal activities that was comparable to that of the reference drug Miconazole at 10mg/ml. Leaf extracts showed better antifungal activity than the bark extracts. For instance, Boscia coriacea (mean 17.40mm) had the highest zone of inhibition followed by Zanthoxylem chalybeum (mean 17.20mm). For the bark extracts, Croton megalocarpus (mean 15.0mm) recorded significantly high antifungal activity while Tithonia diversfolia (mean 13.0mm) had the lowest at 400mg/ml. Senna siamea had the lowest MIC and MFC of 6.25mg/ml and 12.5mg/ml respectively. The preliminary phytochemical analysis of the 15 effective medicinal plants revealed the presence of bioactive compounds that included tannins, saponins, flavonoids, terpenoids, cardiac glycosides and alkaloids. The results obtained from the study could be used as a viable management strategy against A. flavus and aflatoxins in the region so as to ensure low mycotoxin exposure as well as low environmental pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.