An extracellular β-glucosidase from Thermoascus aurantiacus was purified to homogeneity by DEAE-Sepharose, Ultrogel AcA 44 and Mono-P column chromatography. The enzyme was a homotrimer, with a monomer molecular mass of 120kDa; only the trimer was optimally active at 80°C and at pH 4.5. At 90°C, the enzyme showed 70% of its optimal activity. It was stable at pH 5.2 and at temperatures up to 70°C for 48h, but stability decreased above 70°C and at pH values above and below 5.0. The enzyme hydrolysed aryl and alkyl β-d-glucosides and cello-oligosaccharides, and was specific for substrates with a β-glycosidic linkage. The hydroxy groups at positions 2, 4 and 6 of a glucose residue at the non-reducing end of a disaccharide appeared to be essential for catalysis. The enzyme had the lowest Km towards p-nitrophenyl β-d-glucoside (0.1137mM) and the highest kcat towards cellobiose and β,β-trehalose (17052min-1). It released one glucose unit at a time from the non-reducing end of cello-oligosaccharides, and the rate of hydrolysis decreased with an increase in chain length. Glucose and d-δ-gluconolactone inhibited the β-glucosidase competitively, with Ki values of 0.29mM and 8.3nM respectively, while methanol, ethanol and propan-2-ol activated the enzyme. The enzyme catalysed the synthesis of methyl, ethyl and propyl β-d-glucosides in the presence of methanol, ethanol and propan-2-ol respectively with either glucose or cellobiose, although cellobiose was preferred. An acidic pH favoured hydrolysis and transglycosylation, but high concentrations of alcohols favoured the latter reaction. The stereochemistry of cellobiose hydrolysis revealed that β-glucosidase from T. aurantiacus is a retaining glycosidase, while N-terminal amino acid sequence alignment indicated that it is a member of glycoside hydrolase family 3.
A series of in vitro studies was conducted to determine the effects of adding a commercial enzyme product on the hydrolysis and fermentation of cellulose, xylan, and a mixture (1:1 wt/wt) of both. The enzyme product (Liquicell 2500, Specialty Enzymes and Biochemicals, Fresno, CA) was derived from Trichoderma reesei and contained mainly xylanase and cellulase activities. Addition of enzyme (0.5, 2.55 and 5.1 microL/g of DM) in the absence of ruminal fluid increased (P < 0.001) the release of reducing sugars from xylan and the mixture after 20 h of incubation at 20 degrees C. Incubations with ruminal fluid showed that enzyme (0.5 and 2.55 microL/g of DM) increased (P < 0.05) the initial (up to 6 h) xylanase, endoglucanase, and beta-D-glucosidase activities in the liquid fraction by an average of 85%. Xylanase and endoglucanase activities in the solid fraction also were increased (P < 0.05) by enzyme addition, indicating an increase in fibrolytic activity due to ruminal microbes. Gas production over 96 h of incubation was determined using a gas pressure measurement technique. Incremental levels of enzyme increased (P < 0.05) the rate of gas production of all substrates, suggesting that fermentation of cellulose and xylan was enzyme-limited. However, adding the enzyme at levels higher than 2.55 microL/g of DM failed to further increase the rate of gas production, indicating that the maximal level of stimulation was already achieved at lower enzyme concentrations. It was concluded that enzymes enhanced the fermentation of cellulose and xylan by a combination of pre- and postincubation effects (i.e., an increase in the release of reducing sugars during the pretreatment phase and an increase in the hydrolytic activity of the liquid and solid fractions of the ruminal fluid), which was reflected in a higher rate of fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.