A fungus was isolated from diseased roots of Cucumis sativus grown in greenhouses. The morphological and cultural characteristics of the isolate allowed it to be classified as Plectosphaerella melonis. BLASTn analysis revealed 99% homology of the ITS sequence from the isolate with 14 Acremonium cucurbitacearum and P. melonis isolates, allowing attribution of the isolate to P. melonis (syn. A. cucurbitacearum). Koch’s hypothesis requirements were fulfilled for the isolate. Symptoms on host roots developed after 14 d of growing cucumber plants on infested soil. Plants of the cucumber variety Nizhynskyi 12 were very susceptible at the two leaf growth stage (2 weeks after sowing). Above-ground disease symptoms were absent after 14 d, even with severely diseased roots. This is the first report of P. melonis on C. sativus in Ukraine.
Aim. To investigate the ability of our phytopathogenic fungal strain 502, earlier preliminarily identified as the phytopathogen Plectosphaerella melonis (syn. Acremonium cucurbitacearum), to have phytotoxic and/or plant growth regulatory activity. Methods. The phytotoxicity of strain 502, was studied by bioassays using the test cultures of corn (Zea mays L.), garden cress (Lepidium sativum L.), cucumber (Cucumis sativus L.), and onion (Allium cepa L.). The cytotoxicity and genotoxicity of the fungus were estimated using the Allium cepa-test. The mitotic index of the, the duration of mitosis phases, and the frequency of aberrant ana-telophases of Allium cepa L. roots meristem was also investigated. For this purpose, strain 502, was grown in the following culture media: synthetic Raulin-Thom medium for 10 days at 26 ± 2 °С. Cell-free filtrate (culture fluid) was used for the study. Ethylene production was quantified in culture filtrate using gas-chromatography meth- od. Ethylene measurement was performed every 7 days during 8 weeks. The determination was carried out using a gas chromatograph «Agilent Technologies 6850» (USA) fitted with a flame ionization detector, using commercial ethylene as a standard for identification and quantification Every experiment had three repeats. The reliability of experimental data was assessed by statistical methods using Statistica 12 (Stat-Soft Inc., USA). Results. Undiluted culture fluid (obtained by growing the fungus on liquid wort) of our strain 502 inhibited the growth of Z. mays seedlings by 14 %, L. sativum seedlings by 18 % (1 : 100 dilution) and stimulated the growth of L. sativum roots by 54 and 41 % (1 : 10 and 1 : 100 dilutions, respectively). The culture fluid, obtained by growing the fungus on Raulin-Thom’s synthetic agar, demonstrated a slight inhibitory effect on the seedlings and roots of L. sativum, and at the dilution of 1 : 1000 stimulated growth by 30 %. Insignificant changes in the mitotic index of the meristem of A. cepa roots were revealed at the effect of the culture fluid of P. melonis, strain 502, diluted at the ratio of 1 : 100 and 1 : 1000. At the same time, the number of cells at the prophase stage decreased 1.7 times (1 : 100 dilution). There is a significant increase in the number of cells at the metaphase stage – 1.3 and 1.4 times (dilution 1 : 100 and 1 : 1000, respectively), the anaphase stage – 2.1 and 1.8 times (dilution 1 : 100 and 1 : 1000, respectively) and the telophase stage – 1.8 times (1 : 100 dilution), as compared with the positive control (culture medium). The frequencies of aberrant ana-telophases in the apical meristems of the initial roots were 5.0 and 2.2 % (at the culture fluid dilution of 1 : 100 and 1 : 1000, respectively). We researched the abil- ity of P. melonis 502 to synthesize ethylene and the highest level of it was registered after 5 weeks of cultivation (111.78 nmol/h g). Conclusions: It was demonstrated by us that the culture fluid of strain 502 showed no phytotoxic effect on roots and seedlings of the investigated cultures, demonstrating the exclusion of phytotoxins from the possible range of effectors. No cytotoxic or genotoxic activity of the culture fluid was observed either. However, the culture fluid altered the dynamics of the cell cycle, in particular, shortened the prophase and stimulated the metaphase, anaphase, and telophase. The culture fluid of the fungus stimulated the growth of L. sativum roots depending on the nutrient medium, where the fungus was grown and cultivated. In particular, when growing the fungus on the liquid wort, the growth was higher by 54 and 41 % (dilution 1 : 10 and 1 : 100, respectively), when growing on synthetic Raulin-Thom’s medium – by 30 %. This demonstrates the ability of strain 502 to possibly synthesize growth promoting substances. Also, we have shown the ability of this strain to synthetize ethylene in vitro (111.78 ± 13.27 nmol/h per g), which can act as virulence factor. We consider the obtained results to be the first stage of the study on the mechanism of the interaction between pathogenic strain 502 and plants.
The article renders the current point of view according to the role of soil molds in plant-microbe interractions. Elucidation of relationship between molds and plants can be scientific basic for elaboration the principles of symbiosis and plant-microbe associations functioning. Thus it opens the way both for creation new environmentally friendly
Актуальність. Огірокєцінною,рентабельною та скоростиглою сільськогосподарськоюкультурою.Втім,упроцесівегетації рослини огірків можуть вражатися різними фітопатогенними мікроорганізмами, зокрема грибами, що призводить дотяжкихматеріальнихзбитківаграрномувиробництву.Заоцінкамивітчизняних тазакордоннихдослідниківбільшніж80 % інфекційних хвороб рослин родини Cucurbitaceae викликається фітопатогенними грибами [1]. Найпоширенішими захворюваннямирослинзазначеноїродини, викликаних грибами, є борошниста роса(Sphaerotheca fuliginea (Schltdl.)Pollacci і Erysiphe cichoracearum DC.), бура плямистість (Cladosporium cucumerinum Ell. & Arthur), корінеспороз, або чорна пліснява (Corynеspora melonis (Cooke) Lindau), коренева гниль та фузаріозне в'янення (Fusarium oxysporum f. cucumerinum Oven., F. semitectum (Berk.&Ravenel), F. solani (Mart.) Sacc., F. equiseti (Corda) Sacc.), аскохітоз (Mycosphaerellamelonis(Pass.)Chiu&Walker (недосконала стадія-Аscochyta melonis Pot.)), антракоз (Colletotrichum lagenarium (Pass.) Ellis & Halst.), пероноспороз, або несправжня борошниста роса (Pseudoperonospora cubensis (Bert. & Curt.) Rostovs.),альтернаріоз(Alternaria cucumeri-ВПЛИВ TRICHODERMA VIRIDE 017 НА МІКОЦЕНОЗ КОРЕНЕВОЇ ЗОНИ РОСЛИН ОГІРКІВ Є. П. КОПИЛОВ, доктор біологічних наук, головний науковий співробітник лабораторії рослинно-мікробних взаємодій Г. В. ЦЕХМІСТЕР, аспірант* лабораторії рослинно-мікробних взаємодій Інститут сільськогосподарської мікробіології та агропромислового виробництва НААН України
Goal. To investigate the antagonistic activity of a new strain of Trichoderma viride F-100076and its effect on the formation of micromycetes populations in the root zone of corn plants underfield conditions. Methods. The antagonistic activity of T. viride F-100076 was studied by the method of mixed (counter) cultures on wort agar using phytopathogenic fungi, which were isolated andidentified in the Laboratory of Plant-Microbial Interactions. The appearance and type of relationship were registered using a scale modified by Symonian and Mamikonian. The number of micromycetes was determined by the method of soil dilutions. Isolation, accounting and cultivation of fungiwas carried out according to conventional methods. Micromycetes were identified according to thedeterminants appropriate for a specific systematic group of micromycetes. Results. It was foundthat T. viride IMB F-100076 is characterized by high antagonistic activity against a wide range ofphytopathogenic fungi, showing hyperparasitism as early as on the eighth day. The highest antagonistic activity of the strain was found against: Alternaria radicina, Acremonium strictum, Acremonium сucurbitacearum, Fusarium oxysporum var. orthoceras, Fusarium moniliforme var. lactis, Torula expansa (5 points on the corresponding Symonian and Mamikonian scale). Data from the mycological analysis of the sod-podzolic soil of the corn rhizosphere showed that the mycocenosis ofthe sod-podzolic soil of the corn rhizosphere was formed by micromycetes belonging to the generaAcremonium Link, Cladosporium Corda, Fusarium Link:Fr, Gliocladium Corda, Mucor Mich, Penicillium Link:Fr, Rhizopus Ehrenb, Trichoderma Hers, among which the most represented were micromycetes of the genus Penicillium (59 %). The total number of fungi in the control variant was291.00 ± 79.67 thousand CFU/g of soil. The introduction of straw affected both the total number ofmicromycetes and the genus composition of fungi. The total number of fungi in the variant withstraw increased 2.6 times and amounted to 744.00 ± 114.67 thousand CFU/g of soil. The number ofrepresentatives of all studied genera of micromycetes also increased. In addition, the introductionof straw provoked the development of fungi of Bipolaris and Fusarium genera, which can be considered a negative outcome since representatives of these species are commonly recognised as pathogens of root diseases. Application of the fungus antagonist T. viride IMB F-100076 to the soilalong with straw did not significantly affect the total number of micromycetes. At the same time, a displacement of fungi of the genus Bipolaris and Fusarium from the rhizosphere of corn was registered.The number of fusaria decreased from 96.00 ± 5.44 to 23.00 ± 2.32 thousand CFU/g of soil or almost4 times and reached the level of the control variant. Fungi of the genus Bipolaris in the variant withthe introduction of trichoderma were not detected. Conclusion. The antagonist fungus T. virideF-100076, introduced into the soil along with straw, strikes root in the soil and exhibits antagonisticactivity against micromycetes of the genera Bipolaris and Fusarium, which are commonly represented by root rot pathogens of many crops. Thus, the new strain T. viride F-100076 allows increasing theantagonistic potential of the rhizosphere soil of corn and protecting plants from pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.