The reactivity and thermostability of a novel mycelium-bound carboxylesterase from lyophilized cells of Aspergillus oryzae are explored in organic solvent. Ethanol acetylation was selected as reference esterification reaction. High carboxylesterase activity cells were used as biocatalyst in batch esterification tests at 12.5 < S(o) < 125 mmol L(-1), 5.0 < X(o) < 30 g L(-1), 0.49 < log P < 4.5 and 30 < T < 80 degrees C, as well as in residual activity tests after incubation at 40 < T < 90 degrees C. The starting rates of product formation were used to estimate with the Arrhenius model the apparent activation enthalpies of the enzymatic reaction (29-33 kJ mol(-1)), the reversible unfolding (56-63 kJ mol(-1)), and the irreversible denaturation (22 kJ mol(-1)) of the biocatalyst.
Hydrogen bioproduction from agro-industrial residues by Enterobacter aerogenes in a continuous packed column has been investigated and a complete reactor characterization is presented. Experimental runs carried out at different residence time, liable of interest for industrial application, showed hydrogen yields ranging from 1.36 to 3.02 mmol H 2 mmol À1 glucose or, in other words, from 37.5% to 75% of the theoretical hydrogen yield. A simple kinetic model of cell growth, validated by experimental results and allowing the prediction of biomass concentration pro®le along the reactor and the optimization of super®cial velocity, is suggested. By applying the developed approach to the selected operative conditions, the identi®cation of the optimum super®cial velocity v 0,opt of about 2.2 cm h )1 corresponding to the maximum hydrogen evolution rate H 2gYmax , was performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.