This paper presents results of normal hardness, plasticity index and elastic modulus for a selection of organic polymers (a poly(methylmethacrylate), PMMA, a poly(styrene), PS, a poly(carbonate), PC, and an ultra-high molecular weight poly(ethylene), UHMWPE) obtained using the contact compliance method. The paper describes in detail the dependence of the imposed penetration depth, the maximum load and the deformation rate upon the hardness and elastic modulus values for these polymeric surfaces; typical penetration depths range from about 10 nm to m where the imposed loads are less than 300 mN. The results show a considerable strain-rate hardening effect for the present systems and possibly a peculiarly harder response of these materials at the near-to-surface (submicron) layers. The paper includes considerations of a practical nature which are drawn in order to overcome some intrinsic limitations of this technique when it is used for polymeric surfaces, especially for a creeping phenomenon which may be observed at the incipient unloading experimental segments. The appropriateness of using a tip calibration constructed upon hard substrates when indenting polymers is reviewed at the conclusion of the paper.
This paper presents results obtained from the scratching of an ultrahigh molecular weight polyethylene (UHMWPE) and a polycarbonate (PC). The data are used to obtain various surface mechanical properties such as the hardness and also the prevailing deformation mechanisms. Scratch results are reported for the case of rigid conical indenters for various tip included angles, bulk temperatures, scratch velocities, and applied normal loads. Scanning electron microscopy (SEM) and laser profilometry data are used to study the surface deformation and damage mechanisms, and to assess the topography of the surfaces after scratching. Deformation maps are provided for these polymers under different experimental conditions, which describe the various deformation characteristics. In general, these polymers show both increasing and decreasing trends for the scratch hardness values with variation of cone angle, (4qW/ηd2; where W is the normal load, d the width of the residual scratch, and q is a characteristic contact parameter, which ranges between 1 and 2). The scratch velocity, which governs the imposed strain rate, imparts an increasing effect on the hardness values, whereas a higher bulk temperature of the material decreases the scratch hardness. The measured responses of the surface properties of these polymers are shown to greatly depend upon the kind of deformation mechanism prevalent during the scratching and associated material removal processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.