Summary
In preparation for the SPE Applied Technology Workshop (ATW) held in Brugge in June 2008, a unique benchmark project was organized to test the combined use of waterflooding-optimization and history-matching methods in a closed-loop workflow. The benchmark was organized in the form of an interactive competition during the months preceding the ATW. The goal set for the exercise was to create a set of history-matched reservoir models and then to find an optimal waterflooding strategy for an oil field containing 20 producers and 10 injectors that can each be controlled by three inflow-control valves (ICVs). A synthetic data set was made available to the participants by TNO, consisting of well-log data, the structure of the reservoir, 10 years of production data, inverted time-lapse seismic data, and other information necessary for the exercise. The parameters to be estimated during the history match were permeability, porosity, and net-to gross- (NTG) thickness ratio. The optimized production strategy was tested on a synthetic truth model developed by TNO, which was also used to generate the production data and inverted time-lapse seismic. Because of time and practical constraints, a full closed-loop exercise was not possible; however, the participants could obtain the response to their production strategy after 10 years, update their models, and resubmit a revised production strategy for the final 10 years of production. In total, nine groups participated in the exercise. The spread of the net present value (NPV) obtained by the different participants is on the order of 10%. The highest result that was obtained is only 3% below the optimized case determined for the known truth field. Although not an objective of this exercise, it was shown that the increase in NPV as a result of having three control intervals per well instead of one was considerable (approximately 20%). The results also showed that the NPV achieved with the flooding strategy that was updated after additional production data became available was consistently higher than before the data became available.
Abstract:The effect of drought on groundwater heads and discharge is often complex and poorly understood. Therefore the propagation of a drought from groundwater recharge to discharge and the influence of aquifer characteristics on the propagation was analysed by tracking a drought in recharge through a linear reservoir. The recharge was defined as a sinusoid function with a period of 1 year. The decrease in recharge owing to drought was simulated by multiplying the recharge during 1 year with a drought fraction between 0 and 1, which represents a decrease in the recharge of 100 to 0%, respectively. The droughts were identified using the threshold level approach, with a threshold that is constant in time. For this case analytical formulations were derived, which express the drought duration and deficit in the groundwater discharge in terms of the decrease in recharge, the reservoir coefficient that characterizes aquifer properties and the height of the threshold level. The results showed that the delay in the groundwater system caused a shift of the main part of the decrease in recharge from the high-flow to the low-flow period. This resulted in an increase in drought deficit for discharge compared with the drought deficit for recharge. Also the development of multiyear droughts caused an increase in drought deficit. The attenuation in the groundwater system caused a decrease in drought deficit. In most cases the net effect of these processes was an increase of drought deficit as a result of the propagation through groundwater. Only for small droughts the deficit decreased from recharge to discharge. The amount of increase or decrease depends on the reservoir coefficient and the severity of the drought. Under most conditions a maximum in the drought deficit occurred for a reservoir coefficient of around 200 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.