Abstract:The effect of drought on groundwater heads and discharge is often complex and poorly understood. Therefore the propagation of a drought from groundwater recharge to discharge and the influence of aquifer characteristics on the propagation was analysed by tracking a drought in recharge through a linear reservoir. The recharge was defined as a sinusoid function with a period of 1 year. The decrease in recharge owing to drought was simulated by multiplying the recharge during 1 year with a drought fraction between 0 and 1, which represents a decrease in the recharge of 100 to 0%, respectively. The droughts were identified using the threshold level approach, with a threshold that is constant in time. For this case analytical formulations were derived, which express the drought duration and deficit in the groundwater discharge in terms of the decrease in recharge, the reservoir coefficient that characterizes aquifer properties and the height of the threshold level. The results showed that the delay in the groundwater system caused a shift of the main part of the decrease in recharge from the high-flow to the low-flow period. This resulted in an increase in drought deficit for discharge compared with the drought deficit for recharge. Also the development of multiyear droughts caused an increase in drought deficit. The attenuation in the groundwater system caused a decrease in drought deficit. In most cases the net effect of these processes was an increase of drought deficit as a result of the propagation through groundwater. Only for small droughts the deficit decreased from recharge to discharge. The amount of increase or decrease depends on the reservoir coefficient and the severity of the drought. Under most conditions a maximum in the drought deficit occurred for a reservoir coefficient of around 200 days.
Nature area Rammegors, which has recently been transformed from a fresh inner-dyke nature area to a salt tidal area. Due to this transformation, salt water is infiltrating in a fresh waterlens. This salinisation process is investigated in more detail by two- and three dimensional models together with mearsurements in the area. Zeeland project FRESHEM has provided detailed isohaline maps of the area and Deltares is making transient isohaline maps based on measurements made by an ERT-cable which is situated in Rammegors. These data has been and will be used to investigate which factors; bathymetry, lithology, tides or regional groundwater flow, will have the largest impact on the salinization process in Rammegors. This investigation shows that discretization size has an influence on the speed and spatial distribution of salt plumes. Lithology has the largest influence on the salinization process, followed by bathymetry. Spring and neap tides do differ from the normal tides situation only when bathymetry is not taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.