Functionalized medium-chain-length polyhydroxyalkanoates (mclPHAs) have gained much interest in research on biopolymers because of their ease of chemical modification. Tailored olefinic mclPHA production from mixtures of octanoic acid and 10-undecenoic acid was investigated in batch and dual (C,N) nutrient limited chemostat cultures of Pseudomonas putida GPo1 (ATCC 29347). In a batch culture, where P. putida GPo1 was grown on a mixture of octanoic acid (58 mol%) and 10-undecenoic acid (42 mol%), it was found that the fraction of aliphatic monomers was slightly lower in mclPHA produced during exponential growth than during late stationary phase. Thus, the total monomeric composition changed over time indicating different kinetics for the two carbon substrates. Chemostat experiments showed that the dual (C,N) nutrient limited growth regime (DNLGR) for 10-undecenoic acid coincided with the one for octanoic acid. Five different chemostats on equimolar mixtures of octanoic acid and 10-undecenoic acid within the DNLGR revealed that the monomeric composition of mclPHA was not a function of the carbon to nitrogen (C(0)/N(0)) ratio in the feed medium but rather of the dilution rate. The fraction of aliphatic monomers in the accumulated mclPHA was slightly lower at high dilution rates and increased towards low dilution rates, again indicating different kinetics for the two carbon substrates in P. putida GPo1.
Micro and nano sized features on surfaces enable new product functionalities. On the lab scale, this has been demonstrated for many applications e.g. for devices with tailored optical or mechanical properties. When process steps are scaled-up in order to establish high volume production, special care must be taken to guarantee the quality of the work pieces. When using (compression) injection moulding for mass production the melt viscosity is a key parameter to achieve good product qualities. In this paper, the impact of water absorption on melt viscosities and work piece qualities is evaluated. Qualitative and quantitative results are presented for micro needle arrays which are produced on the IMPRESS platform (compression injection moulding machine in combination with several peripheral modules).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.