This article presents a mathematical model to describe High-Rate Algal Ponds (HRAPs). The hydrodynamic behavior of the reactor is described as completely mixed tanks in series with recirculation. The hydrodynamic pattern is combined with a subset of River Water Quality Model 1 (RWQM1), including the main processes in liquid phase. Our aim is to develop models for WSPs and aerated lagoons, too, but we focused on HRAPs first for several reasons: Sediments are usually less abundant in HRAP and can be neglected, Stratification is not observed and state variables are constant in a reactor cross section, Due to the system's geometry, the reactor is quite similar to a plugflow type reactor with recirculation, with a simple advection term. The model is based on mass balances and includes the following processes: *Phytoplankton growth with NO3-, NO2- and death, *Aerobic growth of heterotrophs with NO3-, NH4+ and respiration, *Anoxic growth of heterotrophs with NO3-, NO2- and anoxic respiration, *Growth of nitrifiers (two stages) and respiration. The differences with regard to RWQM1 are that we included a limiting term associated with inorganic carbon on the growth rate of algae and nitrifiers, gas transfers are taken into account by the familiar Adeney equation, and a subroutine calculates light intensity at the water surface. This article presents our first simulations.
We previously suggested a method to characterize the oxygen balance in High-Rate Algal Ponds (HRAPs). The method was based on a hydrodynamic study of the reactor combined with a tracer gas method to measure the oxygen transfer coefficient. From such a method diurnal variations of photosynthesis and respiration can be quantified and the net oxygen production rate determined. In this paper we propose a similar approach to obtain carbon dioxide balances in HRAPs. Then oxygen and carbon dioxide balances can be compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.