A novel series of linear, high-molecular-weight polymers and copolymers was synthesized by one-pot, metal-free superacid-catalyzed reaction of trifluoromethylalkyl (1a−1c) and trifluoromethylaryl (1d−1h) ketones with the linear, nonactivated, multiring aromatic hydrocarbons biphenyl (A), p-terphenyl (B), and p-quaterphenyl (C). The polymerizations were performed at room temperature in the Brønsted superacid trifluoromethanesulfonic acid (CF 3 SO 3 H, TFSA) and in a mixture of TFSA with methylene chloride. Polymerizations of trifluoromethyl ketones (1c, 1f−1h) bearing functional groups gave polymers with reactive lateral groups such as bromomethyl, 4-(N,N-dimethylamino)phenyl-, 3-sulfophenyl-, and 2,3,4,5,6-pentafluorophenyl. The polymers obtained were soluble in most common organic solvents and flexible transparent films could be cast from the solutions. 1 H and 13 C NMR analyses of the polymers synthesized revealed their linear structure with para-substitution in the phenylene fragments of the main chain. The molecular weights (M w ) of the polymers based on trifluoromethylalkyl ketones and aromatic are very high and reach 1 000 000, while the molecular weights of the polymers based on trifluoromethylaryl ketones and aromatic ranged from 30 000 to 300 000 g/mol. The polydispersity of the polymers is generally less than 2. The polymers also possess high thermostability. Mechanistic aspects of polymerization mechanism have been discussed, and a new approach for monomer design has been proposed.
Carbon quantum dots (CQDs) are novel nanostructures that have great potential as fluorescent markers due to their multi-fluorescence, down and up converted emission, resistance to photobleaching, and biocompatibility. Here, we report the synthesis of fluorescent CQDs by the submerged arc discharge in water method. We discuss the method's simplicity, natural phases’ separation, and scalability. The produced CQDs size distribution was in the range of 1–5 nm. High-resolution transmission electron microscopy images and their fast Fourier transformation allowed the analysis of the CQDs’ internal structure. The absorption and fluorescence spectra of the as-produced CQDs were analyzed. The UV-Vis spectrum shows a single band with a maximum located at 356 nm. The photoluminescence emission presents two consistent bands with maxima located in the ranges of 320–340 nm (band A) and 400–410 nm (band B). To these emission bands correspond two bands in the excitation spectra located at 275 nm (band A) and 285 nm (band B). The fluorescence quantum yield was assessed as ∼16% using Rhodamine 6G as reference. The capabilities of the produced CQDs as fluorescent markers for in vitro studies were also evaluated by setting them in contact with a cell culture of L929 murine fibroblasts. Control and CQD-treated cell cultures were visualized under a fluorescence microscope. Finally, the mechanism of formation of these nanostructures by top-down methods is discussed, and a general model of formation is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.