Abstract. We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F. The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts. In the early night sector, the bottomside of the F layer is almost always unstable. The evolution of the unstable layer is controlled by the history of the vertical drift velocity. When the drift velocities are large enough, the necessary seeding mechanisms for the generation of strong spread F always appear to be present. The threshold drift velocity for the generation of strong early night irregularities increases linearly with solar flux. The geomagnetic control on the generation of spread F is season, solar cycle, and longitude dependent. These effects can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance dynamo electric fields. The occurrence of early night spread F decreases significantly during equinox solar maximum magnetically disturbed conditions due to disturbance dynamo electric fields which decrease the upward drift velocities near sunset. The generation of late night spread F requires the reversal of the vertical velocity from downward to upward for periods longer than about half an hour. These irregularities occur most often at -0400 local time when the prompt penetration and disturbance dynamo vertical drifts have largest amplitudes. The occurrence of late night spread F is highest near solar minimum and decreases with increasing solar activity probably due to the large increase of the nighttime downward drifts with increasing solar flux.
Ionospheric scintillations are one of the earliest known effects of space weather. Caused by ionization density irregularities, scintillating signals change phase unexpectedly and vary rapidly in amplitude. GPS signals are vulnerable to ionospheric irregularities and scintillate with amplitude variations exceeding 20 dB. GPS is a weak signal system and scintillations can interrupt or degrade GPS receiver operation. For individual signals, interruption is caused by fading of the in‐phase and quadrature signals, making the determination of phase by a tracking loop impossible. Degradation occurs when phase scintillations introduce ranging errors or when loss of tracking and failure to acquire signals increases the dilution of precision. GPS scintillations occur most often near the magnetic equator during solar maximum, but they can occur anywhere on Earth during any phase of the solar cycle. In this article we review the subject of GPS and ionospheric scintillations for scientists interested in space weather and engineers interested in the impact of scintillations on GPS receiver design and use.
Abstract. The data from ground based experiments conducted during the 2005 SpreadFEx campaign in Brazil are used, with the help of theoretical model calculations, to investigate the precursor conditions, and especially, the role of gravity waves, in the instability initiation leading to equatorial spread F development. Data from a digisonde and a 30 MHz coherent back-scatter radar operated at an equatorial site, Sao Luis (dip angle: 2.7 • ) and from a digisonde operated at another equatorial site (dip angle: −11.5 • ) are analyzed during selected days representative of differing precursor conditions of the evening prereversal vertical drift, F layer bottom-side density gradients and density perturbations due to gravity waves. It is found that radar irregularity plumes indicative of topside bubbles, can be generated for precursor vertical drift velocities exceeding 30 m/s even when the precursor GW induced density oscillations are marginally detectable by the digisonde. For drift velocities ≤20 m/s the presence of precursor gravity waves of detectable intensity is found to be a necessary condition for spread F instability initiation. Theoretical model calculations show that the zonal polarization electric field in an instability development, even as judged from its linear growth phase, can be significantly enhanced under the action of perturbation winds from gravity waves. Comparison of the observational results with the theoretical model calculations provides evidence for gravity wave seeding of equatorial spread F.
Ion drift meter observations from the Atmosphere Explorer E satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes < 7.5 ø) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diurnal, seasonal, and solar cycle dependence of the longitudinally averaged drifts are consistent with results from the Jicamarca radar except near the June solstice when the AE-E nighttime downward velocities are significantly smaller than those observed by the radar. Pronounced presunrise downward drift enhancements are often observed over a large longitudinal range but not in the Peruvian equatorial region. The satellite data indicate that longitudinal variations are largest near the June solstice, particularly near dawn and dusk but are virtually absent during equinox. The longitudinal dependence of the AE-E vertical drifts is consistent with results from ionosonde data. These measurements were also used to develop a description of equatorial F region vertical drifts in four longitudinal sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.