An experimental investigation on comparative heat transfer study on a solvent and solution were made using 1-1 Shell and Tube Heat Exchanger. Steam is the hot fluid, whereas Water and Acetic acid-Water miscible solution serves as cold fluid. A series of runs were made between steam and water, steam and Acetic acid solution. In addition to, the volume fraction of Acetic acid was varied and the experiment was held. The flow rate of the cold fluid is maintained from 120 to 720 lph and the volume fraction of Acetic acid is varied from 10-50%. Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculated. A mathematical model was developed for the outlet temperatures of both the Shell and Tube side fluids and was simulated using MATLAB program. The model was compared with the experimental findings and found to be valid
Abstract:Compact heat exchangers which were initially developed for the aerospace industries in the 1940s have been considerably improved in the past few years. The main reasons for the good performance of compact heat exchangers are their special design which includes turbulent which in turn use high heat transfer coefficient and resists fouling, and maximum temperature driving force between the hot and cold fluids. Numerous types use special enhancement techniques to achieve the required heat transfer in smaller plot areas and, in many cases, less initial investment. One such type of compact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchanger design equations results from the exchangers unique ability to transfer heat between multiple process streams and a wide array of possible flow configurations. This paper presents the performance evaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems. Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculated for the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature of both the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchanger was developed and simulated using MATLAB, which was verified with the experiments conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.