Within optogenetics there is a need for compact light sources that are capable of delivering light with excellent spatial, temporal, and spectral resolution to deep brain structures. Here, we demonstrate a custom GaN-based LED probe for such applications and the electrical, optical, and thermal properties are analyzed. The output power density and emission spectrum were found to be suitable for stimulating channelrhodopsin-2, one of the most common light-sensitive proteins currently used in optogenetics. The LED device produced high light intensities, far in excess of those required to stimulate the light-sensitive proteins within the neurons. Thermal performance was also investigated, illustrating that a broad range of operating regimes in pulsed mode are accessible while keeping a minimum increase in temperature for the brain (0.5°C). This type of custom device represents a significant step forward for the optogenetics community, allowing multiple bright excitation sites along the length of a minimally invasive neural probe.
The fabrication of gallium-nitride (GaN)-based light-emitting diode (LED) arrays by a direct writing technique, itself using micron-sized LEDs (micro-LEDs), is reported. CMOSdriven ultraviolet GaN-based micro-LED arrays are used to pattern photoresist layers with feature sizes as small as 500 nm. Checkerboard-type square LED array devices are then fabricated using such photoresist patterns based on either single pixel or multipixel direct writing, and implemented as part of a completely mask-less process flow. These exemplar arrays are composed of either 450-nm-emitting 199 × 199 µm 2 pixels on a 200-µm pitch or 520-nm-emitting 21 × 18 µm 2 pixels on a 23-µm pitch. Fill factors of 99% and 71.5% are achieved with optical output power densities per pixel of 5 and 20 W/cm 2 at 90-and 6-mA dc-injected currents, respectively.Index Terms-Gallium nitride, micro light-emitting diodes (micro-LEDs), nanolithography, semiconductor device manufacture.
We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370 nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8 W/cm2 per imaged pixel in circular spots of diameter approximately 8 microm. We show example structures written in positive as well as in negative photoresist.
Silver nanoparticle ink has been inkjet-printed onto inorganic GaN-based microstructured light emitting diodes to form narrow conductive tracks with a width down to ~30μm and a resistivity value approximating to that of a conventional sputtered metal (Ti/Au) track. These silver tracks serve as "active" electrodes with comparable performance to the deposited metal tracks, demonstrating a new, simple and cost-effective route for the electrode fabrication of GaN based LED devices.
We report on a new fabrication approach to create individually-addressable InGaN-based nanoscale-LEDs. It is based on the creation by LEEBI of a spatially confined sub-micron-size charge injection path within the p-GaN of an LED structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.