Gallium-nitride (GaN) based light-emitting diodes (LEDs) are highly-efficient sources for general purpose illumination. Visible light communications (VLC) uses these sources to supplement existing wireless communications by offering a large, licence-free region of optical spectrum. Here we report on progress in the development of micro-scale GaN LEDs (micro-LEDs), optimized for VLC. These blue-emitting micro-LEDs are shown to have very high electrical-to-optical modulation bandwidths, exceeding 800 MHz. The data transmission capabilities of the micro-LEDs are illustrated by demonstrations using on-off-keying (OOK), pulse-amplitude modulation (PAM) and orthogonal frequency division multiplexing (OFDM) modulation schemes to transmit data over free space at rates of 1.7, 3.4 and 5 Gbps, respectively.
Visible light communication (VLC) is a promising solution to the increasing demands for wireless connectivity. Gallium nitride micro-sized light emitting diodes (micro-LEDs) are strong candidates for VLC due to their high bandwidths. Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz. An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated, and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED, when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system. A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.
LED based Visible Light Communications can provide high data rates to users. This can be further increased by the use of wavelength division multiplexing, using the different colours required to generate white light to transmit different data streams. In this paper a trichromatic approach is described, and the influence of colour combination on achievable data rate is analysed. A demonstration of LED based communications which achieves a data rate of >10 Gb/s by using a rate adaptive orthogonal-frequency-division-multiplexing scheme is also reported.
Displays based on microsized gallium nitride light-emitting diodes possess extraordinary brightness. It is demonstrated here both theoretically and experimentally that the layout of the n-contact in these devices is important for the best device performance. We highlight, in particular, the significance of a nonthermal increase of differential resistance upon multipixel operation. These findings underpin the realization of a blue microdisplay with a luminance of 10 6 cd/m 2 .
Abstract-Visible light communications (VLC) has the potential to play a major part in future smart home and next generation communication networks. There is significant ongoing work to increase the achievable data rates using VLC, to standardize it and integrate it within existing network infrastructures.The future of VLC systems depends on the ability to fabricate low cost transceiver components and to realize the promise of high data rates. This paper reports the design and fabrication of integrated transmitter and receiver components. The transmitter uses a two dimensional individually addressable array of micro light emitting diodes (µLEDs) and the receiver uses an integrated photodiode array fabricated in a CMOS technology. A preliminary result of a MIMO system implementation operating at a data rate of ~1Gbps is demonstrated. This paper also highlights the challenges in achieving highly parallel data communication along with the possible bottlenecks in integrated approaches.
IndexTerms-Visible light communications, Optical communication system design, multiple input multiple output, optical wireless communications, link budget analysis, integrated optical system design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.