SUMMARYThis data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over R eactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na + -H + ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermo dynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites.Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.v CONTENTS
Ge nanocrystallites (Ge-nc) embedded in a SiO(2) matrix are investigated using Raman spectroscopy, photoluminescence and Fourier transform infrared spectroscopy. The samples were prepared by ion implantation with different implantation doses (0.5, 0.8, 1, 2, 3 and 4) × 10(16) cm(-2) using 250 keV energy. After implantation, the samples were annealed at 1000 °C in a forming gas atmosphere for 1 h. All samples show a broad Raman spectrum centred at w≈304 cm(-1) with a slight shift depending on the implantation doses. The Raman intensity also depends on the Ge(74+) dose. A maximum photoluminescence intensity is observed for the sample implanted at room temperature with a dose of 2 × 10(16) cm(-2) at 3.2 eV. Infrared spectroscopy shows that the SiO(2) films moved off stoichiometry due to Ge(74+) ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeO(x) at exactly the dose corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm(-1). Finally, the Raman spectra were fitted with a theoretical expression to evaluate the average size, full-width at half-maximum (FWHM) and dispersion of Ge-nc size.
Analytical solution for optical trapping force on a spherical dielectric particle for an arbitrary positioned focused beam is presented in a generalized Lorenz-Mie and vectorial diffraction theory. In this case the exact electromagnetic field is considered in the focal region. A double tweezers setup was employed to perform ultra sensitive force spectroscopy and observe the forces, demonstrating the selectively couple of the transverse electric (TE), transverse magnetic (TM) modes by means of the beam polarization and positioning, and to observe correspondent morphology-dependent resonances (MDR) as a change in the optical force. The theoretical prediction of the theory agrees well with the experimental results. The algorithm presented here can be easily extended to other beam geometries and scattering particles. G. Gouesbet, B. Maheu, G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam using Bromwich formulation," J Opt Soc Am A, 5, 1427-1443 (1988
Abstract. When treating problems of vector diffraction in electromagnetic theory, the evaluation of the integral involving Bessel and associated Legendre functions is necessary. Here we present the analytical result for this integral that will make unnecessary numerical quadrature techniques or localized approximations. The solution is presented using the properties of the Bessel and associated Legendre functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.