Ge nanocrystallites (Ge-nc) embedded in a SiO(2) matrix are investigated using Raman spectroscopy, photoluminescence and Fourier transform infrared spectroscopy. The samples were prepared by ion implantation with different implantation doses (0.5, 0.8, 1, 2, 3 and 4) × 10(16) cm(-2) using 250 keV energy. After implantation, the samples were annealed at 1000 °C in a forming gas atmosphere for 1 h. All samples show a broad Raman spectrum centred at w≈304 cm(-1) with a slight shift depending on the implantation doses. The Raman intensity also depends on the Ge(74+) dose. A maximum photoluminescence intensity is observed for the sample implanted at room temperature with a dose of 2 × 10(16) cm(-2) at 3.2 eV. Infrared spectroscopy shows that the SiO(2) films moved off stoichiometry due to Ge(74+) ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeO(x) at exactly the dose corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm(-1). Finally, the Raman spectra were fitted with a theoretical expression to evaluate the average size, full-width at half-maximum (FWHM) and dispersion of Ge-nc size.
Articles you may be interested in Characterization and versatile applications of low hydrogen content SiOCN grown by plasma-enhanced chemical vapor deposition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.