Summary. Conidia of Fusarium oxysporum f. sp. vasit~fectum started to germinate on the roots of cotton (Gossypium barbadense L.) 6 h after inoculation and formed a compact mycelium covering the root surface. 18 h later, penetration hyphae branched off and infected the root. The number of penetration hyphae increased with the number of conidia used for inoculation. The optimal temperature for penetration was between 28 and 30 ~ The highest numbers of penetration hyphae were found in the meristematic zone, 40 percent less in the elongation and root hair zones, and none in the lateral root zone. The fine structure of the infection process was studied in protodermal cells of the meristematic zone and in rhizodermal cells of the elongation zone. The penetration hyphae were well preserved after freeze substitution and showed a Golgi equivalent consisting of three populations of smooth cisternae. Plant reactions were found already during fungal growth on the root surface. In the meristematic zone, a thickening of the plant cell wall due to an apposition of dark and lightly staining material below the hyphae occurred. This wall apposition increased in size around the hypha invading the plant cell and led to the formation of a prominent wall apposition with finger-like projections into the host cytoplasm. In the elongation zone, the deposits around the penetration hypha appeared less thick and the dark inclusions were less pronounced. High pressure freezing of infected cells revealed, that F. oxysporum penetrates and grows within the host cells without inducing damages such as plasmolysis, cell degeneration or even host necrosis. We suggest that F. oxysporum has an endophytic or biotrophie phase during colonization of the root tips.
Abstract. Fusarium oxysporum f. sp. vasinfectum penetration hyphae infect living cells in the meristematic zone of cotton (Gossypium barbadense L.) roots. We characterized wall modifications induced by the fungus during infection of the protodermis using antibodies against callose, arabinogalactan-proteins, xyloglucan, pectin, polygalacturonic acid and rhamnogalacturonan I in high-pressure frozen, freeze-substituted root tissue. Using quantitative immunogold labelling we compared the cell walls before and after hyphal contact, cell plates with plasmodesmata during cytokinesis, and wall appositions induced by fungal contact. In the already-existing wall, fungal contact induced only minor modifications such as an increase of xyloglucan epitopes. Wall appositions mostly exhibited epitopes similar to the cell plate except that wall appositions had a much higher callose content. This study shows that wall appositions induced by Fusarium oxysporum hyphae are the result of normal cell wall synthesis and the addition of large amounts of callose. The appositions do not stop fungal growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.