A new reference cigarette, the 3R4F, has been developed to replace the depleting supply of the 2R4F cigarette. The present study was designed to compare mainstream smoke chemistry and toxicity of the two reference cigarettes under the International Organization for Standardization (ISO) machine smoking conditions, and to further compare mainstream smoke chemistry and toxicological activity of the 3R4F cigarette by two different smoking regimens, i.e., the machine smoking conditions specified by ISO and the Health Canada intensive (HCI) smoking conditions.The in vitro cytotoxicity and mutagenicity was determined in the neutral red uptake assay, the Salmonella reverse mutation assay, and the mouse lymphoma thymidine kinase assay. Additionally, a 90-day nose-only inhalation study in rats was conducted to assess the in vivo toxicity. The comparison of smoke chemistry between the two reference cigarettes found practically the same yields of total particulate matter (TPM), ‘tar’, nicotine, carbon monoxide, and most other smoke constituents. For both cigarettes, the in vitro cytotoxicity, mutagenicity, and in vivo toxicity showed the expected smoke-related effects compared to controls without smoke exposure. There were no meaningful differences between the 2R4F and 3R4F regarding these toxicological endpoints. The assessments for the 3R4F cigarette by smoking regimen found as a trivial effect, due to the higher amount of smoke generated per cigarette under HCI conditions, an increased yield of toxicant and higher toxicological activity per cigarette. However, per mg TPM, ‘tar’, or nicotine, the amounts of toxicants and the in vitro toxicity were generally lower under HCI conditions, but the in vivo activity was not different between the two machine smoking conditions. Overall, as the main result, the present study suggests equivalent smoke chemistry and in vitro and in vivo toxicity for the 2R4F and 3R4F reference cigarettes.
The chemical composition of mainstream smoke from an electrically heated cigarette (EHC) and that of mainstream smoke from the University of Kentucky Reference Cigarette 1R4F was analyzed. In contrast to the 1R4F, which is a conventional, lit-end cigarette, the EHC is smoked in a microprocessor-controlled lighter with electrical heater elements. The electrical heating causes the tobacco under the heater element to burn at a low temperature during each puff. A comprehensive list of chemical constituents was analyzed in mainstream smoke. The list is a combination of those compounds suggested for analysis in cigarette smoke by a US Consumer Product Safety Commission proposal in 1993, and those cigarette smoke constituents identified by the International Agency on Research on Cancer as being present in cigarette smoke and characterized as carcinogens. The low pyrolysis/combustion temperature of tobacco in the EHC causes distinct shifts in the composition of the smoke compared with a conventional cigarette. A significant drop was seen in the yields of almost all toxicologically relevant constituents. On a per cigarette basis almost two-thirds of the constituents were reduced by at least 80%, whereas on an equal total particulate matter basis about two-thirds of the constituents were reduced by at least 50%, with many constituents reduced by more than 90%.
Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.