How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Carrier relaxation in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dots emitting at 1.55 μm and quantum dots coupled to the In0.64Ga0.36As/In0.53Ga0.23Al0.24As quantum well through a thin In0.53Ga0.23Al0.24As barrier is investigated employing high-temporal-resolution (< 0.3 ps), time-resolved spectroscopic techniques at cryogenic temperatures, supported additionally with photoluminescence, photoluminescence excitation, and theoretical modelling. We focused on intra-band carrier relaxation pathways that solely determine the observed non-equilibrium carrier population kinetics. We ascertained relatively fast carrier capture and intra-band relaxation process in a reference structure with quantum dots only (∼8 ps time constant) and even faster initial relaxation in the coupled system (∼4 ps). An evident bottleneck effect is observed for the final relaxation stage in the coupled quantum dots-quantum well system slowing down the overall relaxation process by a factor of 5. The effect is attributed to a peculiar picture of the confined conduction band states in the coupled system exhibiting significant changes in the spatial distribution between the relevant lowest-lying electronic states.
We investigate a hybrid system containing an In0.53Ga0.47As quantum well (QW), separated by a thin 2 nm In0.53Ga0.23Al0.24As barrier from 1.55 µm emitting InAs quantum dots (QDs), grown by molecular beam epitaxy on an InP substrate. Photoreflectance and photoluminescence (PL) spectroscopies are used to identify optical transitions in the system, with support of 8-band kp modelling. The main part of the work constitute the measurements and analysis of thermal quenching of PL for a set of samples with different QW widths (3–6 nm). Basing on Arrhenius plots, carrier escape channels from the dots are identified, pointing at the importance of carrier escape into the QW. A simple two level rate equations model is proposed and solved, exhibiting qualitative agreement with experimental observations. We show that for a narrow QW the escape process is less efficient than carrier supply via the QW due to the narrow barrier, resulting in improved emission intensity at room temperature. It proves that with carefully designed energy level structure, a hybrid QW/QD system can be used as an active region in telecom lasers with improved efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.