PEG-induced asymmetric somatic hybridization between Brassica napus and Crambe abyssinica was carried out. C. abyssinica is an annual cruciferous oil crop with a high content of erucic acid in the seed oil valuable for technical purposes. UV-irradiated mesophyll protoplasts of C. abyssinica cv 'Carmen' and cv 'Galactica' were fused with hypocotyl protoplasts of different genotypes of B. napus cv 'Maplus' and breeding line '11502'. Shoot regeneration frequency varied between 6.1% and 20.8% among the different doses of UV-irradiation, ranging from 0.05 J/cm(2) to 0.30 J/cm(2). In total, 124 shoots were regenerated, of which 20 asymmetric somatic hybrids were obtained and verified by nuclear DNA content and AFLP analysis. AFLP data showed that some of the characteristic bands from C. abyssinica were present in the hybrids. Cytological analysis of these hybrids showed that 9 out of 20 asymmetric hybrids had 38 chromosomes, the others contained 40-78 chromosomes, having additional chromosomes between 2 and 40 beyond the 38 expected for B. napus. The investigation into the fertility of asymmetric somatic hybrids indicated that the fertility increased with increasing UV-doses ranging from 0.05 J/cm(2) to 0.15 J/cm(2). All of the hybrids were cultured to full maturity, and could be fertilized and set seeds after self-pollination or backcrosses with B. napus. An analysis of fatty acid composition in the seeds was conducted and found to contain significantly greater amounts of erucic acid than B. napus. This study indicates that UV-irradiation could be used as a tool to produce asymmetric somatic hybrids and to promote the fertility of the hybrids.
Electrically induced protoplast fusion was used to produce somatic hybrids between Brassica napus L. and Sinapis alba L. Seven hybrids were obtained and verified by the simple sequence repeat and cleaved amplified polymorphic sequence analysis of the gene fae1, indicating that the characteristic bands from S. alba were present in the hybrids. The hybridity was also confirmed by chromosome number counting because the hybrids possessed 62 chromosomes, corresponding to the sum of fusion-parent chromosomes. Chromosome pairing at meiosis was predominantly normal, which led to high pollen fertility, ranging from 66% to 77%. All hybrids were grown to full maturity and could be fertilized and set seed after self-pollination or back-crosses with B. napus. The morphology of the hybrids resembled characteristics from both parental species. An analysis of the fatty acid composition in the seeds of F 1 plants was conducted and the seeds were found to contain different amounts of erucic acid, ranging from 11.0% to 52.1%.
The value of different vegetable oils can be correlated with the content of polyunsaturated fatty acids, especially omega-3-fatty acids such as linolenic acid, because of their contribution to healthy nutrition. One expression for the degree of unsaturation is the iodine value normally measured with gas chromatography. The use of Raman spectroscopy allows a rapid calculation of the iodine value and, in addition, only in a minimal sample volume. Therefore, this method can be used in single rapeseeds in order to predict the iodine value before harvesting. Additionally, the method can also be used for breeding investigations. Here, the lipid content and composition of a plant can be predicted by measuring the seedling without destruction.
Sexual progenies of asymmetric somatic hybrids between Brassica napus and Crambe abyssinica were analyzed with respect to chromosomal behavior, fae1 gene introgression, fertility, and fatty-acid composition of the seed. Among 24 progeny plants investigated, 11 plants had 38 chromosomes and were characterized by the occurrence of normal meiosis with 19 bivalents. The other 13 plants had more than 38 chromosomes, constituting a complete chromosomal set from B. napus plus different numbers of additional chromosomes from C. abyssinica. The chromosomes of B. napus and C. abyssinica origin could be clearly discriminated by genomic in situ hybridization (GISH) in mitotic and meiotic cells. Furthermore, meiotic GISH enabled identification of intergenomic chromatin bridges and of asynchrony between the B. napus and C. abyssinca meiotic cycles. Lagging, bridging and late disjunction of univalents derived from C. abyssinica were observed. Analysis of cleaved amplified polymorphic sequence (CAPS) markers derived from the fae1 gene showed novel patterns different from the B. napus recipient in some hybrid offspring. Most of the progeny plants had a high pollen fertility and seed set, and some contained significantly greater amounts of seed erucic acid than the B. napus parent. This study demonstrates that a part of the C. abyssinica genome can be transferred into B. napus via asymmetric hybridization and maintained in sexual progenies of the hybrids. Furthermore, it confirms that UV irradiation improves the fertility of the hybrid and of its sexual progeny via chromosomal elimination and facilitates the introgression of exotic genetic material into crop species.
A protocol for Agrobacterium tumefaciens-mediated transformation of Brassica napus mesophyll protoplasts is described. A strain with a neomycin phosphotransferase (nptII) gene and a KCS gene under control of a napin promoter was used at co-cultivation. Transformed protoplasts were regenerated to fertile and morphologically normal transgenic plants. Transformants were confirmed by PCR of the nptII gene and NAP/KCS expression cassette, and Southern blot analysis. Seeds of the transformants showed a changed fatty acid profile: two transformants had a higher erucic acid level and differed significantly from that of B. napus. Genetic analysis of the progeny revealed that the kanamycin resistance introduced was inherited in a Mendelian fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.