We focus on a particular connection between queueing and risk models in a multidimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue), we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline of how the two-dimensional risk model with a general two-dimensional claim size distribution (hence, without ordering of claim sizes) is related to a known Riemann boundary-value problem.
We focus on a particular connection between queueing and risk models in a multidimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue), we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline of how the two-dimensional risk model with a general two-dimensional claim size distribution (hence, without ordering of claim sizes) is related to a known Riemann boundary-value problem.
Abstract:We study the generalization of the G/G/1 queue obtained by relaxing the assumption of independence between inter-arrival times and service requirements. The analysis is carried out for the class of multivariate matrix exponential distributions introduced in [12]. In this setting, we obtain the steady state waiting time distribution and we show that the classical relation between the steady state waiting time and the workload distributions remains valid when the independence assumption is relaxed. We also prove duality results with the ruin functions in an ordinary and a delayed ruin process. These extend several known dualities between queueing and risk models in the independent case. Finally we show that there exist stochastic order relations between the waiting times under various instances of correlation.
a b s t r a c tWe investigate an insurance risk model that consists of two reserves which receive income at fixed rates. Claims are being requested at random epochs from each reserve and the interclaim times are generally distributed. The two reserves are coupled in the sense that at a claim arrival epoch, claims are being requested from both reserves and the amounts requested are correlated. In addition, the claim amounts are correlated with the time elapsed since the previous claim arrival.We focus on the probability that this bivariate reserve process survives indefinitely. The infinitehorizon survival problem is shown to be related to the problem of determining the equilibrium distribution of a random walk with vector-valued increments with 'reflecting' boundary. This reflected random walk is actually the waiting time process in a queueing system dual to the bivariate ruin process.Under assumptions on the arrival process and the claim amounts, and using Wiener-Hopf factorization with one parameter, we explicitly determine the Laplace-Stieltjes transform of the survival function, c.q., the two-dimensional equilibrium waiting time distribution.Finally, the bivariate transforms are evaluated for some examples, including for proportional reinsurance, and the bivariate ruin functions are numerically calculated using an efficient inversion scheme.
We study a coupled processor model with simultaneous arrivals. Under the assumption of ordered input, the Laplace-Stieltjes transform of the joint stationary amount of work in the system can be explicitly calculated by relating it to the amount of work in a parallel queueing system without coupling. This relation is first exploited for the system with two coupled queues. The method is then extended to higher dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.