Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea‐level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind‐driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea‐level pressure with historical sea‐level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea‐level pressure.
Polar amplification is a widely discussed phenomenon, and a range of mechanisms have been proposed to contribute to it, many of which involve atmospheric and surface processes. However, substantial questions remain regarding the role of ocean heat transport. Previous studies have found that ocean heat transport into the Arctic increases under global warming, but the reasons behind this remain unresolved. Here, we investigate changes in oceanic heat fluxes and associated impacts on polar amplification using an idealized ocean‐sea ice‐climate model of the Northern Hemisphere. We show that beneath the sea ice, vertical temperature gradients across the halocline increase as the ocean warms, since the surface mixed layer temperatures in ice‐covered regions are fixed near the freezing point. These enhanced vertical temperature gradients drive enhanced horizontal heat transport into the polar region and can contribute substantially to polar amplification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.