This document provides guidance for communicators on how to communicate the various expressions of uncertainty described in EFSA's document: ‘Guidance on uncertainty analysis in scientific assessments’. It also contains specific guidance for assessors on how best to report the various expressions of uncertainty. The document provides a template for identifying expressions of uncertainty in scientific assessments and locating the specific guidance for each expression. The guidance is structured according to EFSA's three broadly defined categories of target audience: ‘entry’, ‘informed’ and ‘technical’ levels. Communicators should use the guidance for entry and informed audiences, while assessors should use the guidance for the technical level. The guidance was formulated using evidence from the scientific literature, grey literature and two EFSA research studies, or based on judgement and reasoning where evidence was incomplete or missing. The limitations of the evidence sources inform the recommendations for further research on uncertainty communication.
This paper analyzes the way risk management measures (RMMs) for consumer products have been used to date in authority and industry risk assessments. A working concept for consumer product RMMs is developed, aimed at controlling, limiting or avoiding exposures, and helping to insure the safe use (or handling) of a substance as part of a consumer product. Particular focus is placed on new requirements introduced by REACH (registration, evaluation, and authorization of chemicals). A RMMs categorization approach is also developed, dividing consumer product RMMs into those that are product integrated and those that are communicated to consumers. For each of these categories, RMMs for normal use, accidental use or misuse need to be distinguished. The level of detail for documenting, assessing and communicating RMMs across supply chains can vary, depending on the type of the assessment (tiered approach). Information on RMMs was collected from published sources to demonstrate that a taxonomical approach using standard descriptors for RMMs libraries is needed for effective information exchange across supply chains.
A method for the determination of low-molecular-weight amines from indoor and ambient air was developed using a concentration device followed by CE coupled with indirect spectrophotometric and mass spectrometric detection that enables a reliable, rapid-response and easy-to-operate method. In indirect detection method, the selected amines were separated from interfering metal ions and amino alcohols present in the samples with an imidazole-based buffer with ethanol and EDTA as modifier. By replacing imidazole with ammonium, the final buffer was applicable for MS detection for the analytes with m/z higher than 50. A novel monolithic polymer material based on poly(methacrylate-acrylate) copolymer was developed for sampling short-chain amines from the gaseous phase. The selected analysis conditions were applied to quantify the selected short-chain amines with detection limits for the whole procedure determined between 1 and 2 microg/filter when 40 L air was sampled with 1 L/min velocity. Improved linearity and precision were obtained when the raw, time-scaled electropherogram data were transformed into mobility-scale applied for the determination of the performance characteristics of the methods. The applicability of the process of data transformation into the mobility scale was demonstrated by studying the matrix effect of water-miscible metal working fluid (stable water-oil emulsion) and of ambient air as real samples. CE-indirect UV and CE-MS, combined with the possibility of rapid air sampling, can be useful for the estimation of short-term exposure of the selected biogenic amines.
Inhabitants of a private home suffered from symptoms possibly due to dichloroacetylene intoxication. Subsequent anamnesis revealed that abundant amounts of trichloroethylene had been used to remove a wax coating from a concrete-lined stone floor. This prompted us to examine whether dichloroacetylene could have been formed. Incubation of two commercial samples of trichloroethylene with aqueous alkaline solutions between pH 11 and 13, with mortar and tile filling material resulted in the formation of dichloroacetylene. This finding suggests formation of dichloroacetylene, when trichloroethylene comes into contact with moderately alkaline material, such as moist concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.