A detailed discussion of the optical properties of Al-rich Al 1−x In x N alloy films is presented. The (0001)-oriented layers with In contents between x = 0.143 and x = 0.242 were grown by metal-organic vapor phase epitaxy on thick GaN buffers. Sapphire or Si(111) served as the substrate. High-resolution X-ray diffraction revealed pseudomorphic growth of the nearly lattice-matched alloys; the data analysis yielded the composition as well as the in-plain strain. The complex dielectric function (DF) between 1 and 10 eV was determined from spectroscopic ellipsometry measurements. The sharp onset of the imaginary part of the DF defines the direct absorption edge, while clearly visible features in the high-photon energy range of the DF, attributed to critical points of the band structure, indicate promising crystalline quality of the AlInN layers. It is demonstrated that the experimental data can be well reproduced by an analytical DF model. The extracted characteristic transition energies are used to determine the bowing parameters for all critical points of the band structure. In particular, strain and the high exciton binding energies for the Al-rich alloys are taken into account in order to assess the splitting between the valence band with Γ v 9 symmetry and the Γ c 7 conduction band at the center of the Brillouin zone. Finally, the compositional dependence of the high-frequency dielectric constants is reported.
The optical properties of quaternary AlxInyGa1-x-yN alloy films with 0.16<x<0.64 and 0.02<y<0.13 are presented. The (0001)-oriented AlInGaN layers were grown by metal-organic vapor phase epitaxy on thick GaN/sapphire templates. High-resolution x-ray diffraction measurements revealed the pseudomorphic growth of the AlInGaN films on the GaN buffer. Rutherford backscattering and wavelength-dispersive x-ray spectroscopy analysis were used in order to determine the composition of the alloys. The ordinary dielectric function (DF) of the AlInGaN samples was determined in the range of 1–10 eV by spectroscopic ellipsometry (SE) at room temperature (synchrotron radiation: BESSY II). The sharp onset of the imaginary part of the DF defines the direct absorption edge of the alloys. At higher photon energies, pronounced peaks are observed in the DF indicating a promising optical quality of the material. These features are correlated to the critical points of the band structure (van Hove singularities). An analytical model, which permits us to accurately describe the dielectric function (or optical constants) in the range of 1–10 eV, is also presented. The band-gap and high-energy interband transition values are obtained by fitting the experimental DF with the analytical model. The strain influence on the bandgap is evaluated by using the k×p formalism. Furthermore, an empirical expression is proposed which allows us to calculate the AlInGaN band-gap and high-energy inter-band transitions in the whole compositional range (x, y). The band-gap values obtained from the empirical expression are in good agreement with both the calculated ab initio and the experimental values determined by SE.
Ga-rich (0001)-oriented In x Ga 1Àx N alloys grown by molecular beam epitaxy or metal-organic vapour phase epitaxy on GaN/ sapphire templates were investigated by spectroscopic ellipsometry at room temperature. The analysis of the extracted dielectric function yielded the characteristic transition energies, i.e., for the band gaps and the high-energy critical points (van Hove singularities). Accounting for strain by using the k Á p formalism, a band-gap bowing parameter of 1.65 AE 0.07 eV for strain-free material was deduced. It is consistent with the ab initio calculated band-gap-dependence for uniform (not clustered) InGaN alloys. The bowing parameters for the highenergy inter-band transitions were found to be close to $1 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.