Vascular endothelial growth factor (VEGF) is a vascular growth factor more recently recognized as a neurotrophic factor (for review see 1). We previously reported that endogenous VEGF protein is dramatically upregulated after pilocarpine-induced status epilepticus in the rat, and that intra-hippocampal infusions of recombinant human VEGF significantly protected against the loss of hippocampal CA1 neurons in this model2. We hypothesized that we would see a preservation of cognitive and emotional functioning with VEGF treatment accompanying the neuroprotection previously observed in this paradigm. Using the Morris water maze to evaluate learning and memory, and the light-dark task to assess anxiety, we found a selective profile of preservation. Specifically, VEGF completely preserved normal anxiety functioning and partially but significantly protected learning and memory after status epilepticus. To determine whether VEGF’s ability to attenuate behavioral deficits was accompanied by sustained preservation of hippocampal neurons, we stereologically estimated CA1 pyramidal neuron densities at four weeks after status epilepticus. At this time point, we found no significant difference in neuronal densities between VEGF- and control-treated status epilepticus animals, suggesting that VEGF could have protected hippocampal functioning independent of its neuroprotective effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.