Vascular endothelial growth factor (VEGF) is a protein factor which has been found to play a significant role in both normal and pathological states. Its role as an angiogenic factor is well-established. More recently, VEGF has been shown to protect neurons from cell death both in vivo and in vitro. While VEGF's potential as a protective factor has been demonstrated in hypoxia-ischemia, in vitro excitotoxicity, and motor neuron degeneration, its role in seizure-induced cell loss has received little attention. A potential role in seizures is suggested by Newton et al.'s [Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J Neurosci 23:10841-10851] finding that VEGF mRNA increases in areas of the brain that are susceptible to cell loss after electroconvulsive-shock induced seizures. Because a linear relationship does not always exist between expression of mRNA and protein, we investigated whether VEGF protein expression increased after pilocarpine-induced status epilepticus. In addition, we administered exogenous VEGF in one experiment and blocked endogenous VEGF in another to determine whether VEGF exerts a neuroprotective effect against status epilepticus-induced cell loss in one vulnerable brain region, the rat hippocampus. Our data revealed that VEGF is dramatically up-regulated in neurons and glia in hippocampus, thalamus, amygdala, and neocortex 24 h after status epilepticus. VEGF induced significant preservation of hippocampal neurons, suggesting that VEGF may play a neuroprotective role following status epilepticus.
Vascular endothelial growth factor (VEGF) is a vascular growth factor more recently recognized as a neurotrophic factor (for review see 1). We previously reported that endogenous VEGF protein is dramatically upregulated after pilocarpine-induced status epilepticus in the rat, and that intra-hippocampal infusions of recombinant human VEGF significantly protected against the loss of hippocampal CA1 neurons in this model2. We hypothesized that we would see a preservation of cognitive and emotional functioning with VEGF treatment accompanying the neuroprotection previously observed in this paradigm. Using the Morris water maze to evaluate learning and memory, and the light-dark task to assess anxiety, we found a selective profile of preservation. Specifically, VEGF completely preserved normal anxiety functioning and partially but significantly protected learning and memory after status epilepticus. To determine whether VEGF’s ability to attenuate behavioral deficits was accompanied by sustained preservation of hippocampal neurons, we stereologically estimated CA1 pyramidal neuron densities at four weeks after status epilepticus. At this time point, we found no significant difference in neuronal densities between VEGF- and control-treated status epilepticus animals, suggesting that VEGF could have protected hippocampal functioning independent of its neuroprotective effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.