SummaryWe describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.
Pheochromocytomas, catecholamine-secreting tumors of neural crest origin, are frequently hereditary1. However, the molecular basis for the majority of these tumors is unknown2. We identified the transmembrane-encoding TMEM127 gene, on chromosome 2q11, as a novel pheochromocytoma susceptibility gene. In a cohort of 103 samples, truncating germline TMEM127 mutations were detected in one-third of familial and about 3% of sporadic-appearing tumors without a known genetic cause. The wild-type allele was consistently deleted in tumor DNA, suggesting a two-hit mechanism of inactivation. Pheochromocytomas with TMEM127 mutations are transcriptionally related to NF1-mutant tumors and, similarly, show hyperphosphorylation of mTOR targets. Accordingly, in vitro gain- and loss-of-function analyses indicate that TMEM127 is a negative regulator of mTOR. TMEM127 dynamically associates with the endomembrane system and colocalizes with perinuclear (activated) mTOR, suggesting a subcompartmental-specific effect. Our studies unveil TMEM127 as a novel tumor suppressor gene and validate the power of hereditary tumors for elucidating cancer pathogenesis.
Proline-
and arginine-rich peptide PR11 is an allosteric inhibitor
of 20S proteasome. We modified its sequence inter alia by introducing
HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety;
R, arginine; Y, tyrosine; X, any residue). Consequently, we were able
to improve inhibitory potency or to convert inhibitors into strong
activators: the former with an aromatic penultimate Hb residue and
the latter with the HbYX motif. The PR peptide activator stimulated
20S proteasome in vitro to efficiently degrade protein substrates,
such as α-synuclein and enolase, but also activated proteasome
in cultured fibroblasts. The positive and negative PR modulators differently
influenced the proteasome conformational dynamics and affected opening
of the substrate entry pore. The resolved crystal structure showed
PR inhibitor bound far from the active sites, at the proteasome outer
face, in the pocket used by natural activators. Our studies indicate
the opportunity to tune proteasome activity by allosteric regulators
based on PR peptide scaffold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.