We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √ sNN =3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ −ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σπ ≈ 45 MeV which corresponds to some 'world average'. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √ sNN =3-20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the "horn" structure in the excitation function of the K + /π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √ sNN ≈ 7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the 'horn'-structure is investigated as a function of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T, µB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.PACS numbers: 25.75. Nq, 25.75.Ld, 24.85.+p, 12.38.Mh † In this work we adopt natural units, henceh = c = 1.
The quark rearrangement model for baryon-antibaryon annihilation and reproduction (BB ↔ 3M)-incorporated in the Parton-Hadron-String Dynamics (PHSD) transport approach-is extended to the strangeness sector. A derivation of the transition probabilities for the three-body processes is presented and a strangeness suppression factor for the invariant matrix element squared is introduced to account for the higher mass of the strange quark compared to the light up and down quarks. In simulations of the baryon-antibaryon annihilation and reformation in a box with periodic boundary conditions, we demonstrate that our numerical implementation fulfills detailed balance on a channel-by-channel basis for more than 2000 individual 2 ↔ 3 channels. Furthermore, we study central Pb+Pb collisions within PHSD from 11.7A GeV to 158A GeV and investigate the impact of the additionally implemented reaction channels in the strangeness sector. We find that the new reaction channels have a visible impact essentially only on the rapidity spectra of antibaryons. The spectra with the additional channels in the strangeness sector are closer to the experimental data than without for all antihyperons. Due to the chemical redistribution between baryons-antibaryons and mesons we find a slightly larger production of antiprotons thus moderately overestimating the available experimental data. We additionally address the question if the antibaryon spectra (with strangeness) from central heavy-ion reactions at these energies provide further information on the issue of chiral symmetry restoration and deconfinement. However, by comparing transport results with and without partonic phase as well as including and excluding effects from chiral symmetry restoration we find no convincing signals in the strange antibaryon sector for either transition due to the strong final-state interactions.
The dynamics of baryon-antibaryon annihilation and reproduction (BB ↔ 3M) is studied within the PartonHadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (BB) (2013)], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the BB ↔ 3M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.