Abstract. Graft copolymers from commercial chlorinated polypropylene (PP-Cl) possessing either poly(ethylene glycol) (PEG) or poly(ɛ-caprolactone) (PCL) grafts are synthesized by copper (I)-catalyzed azide-alkyne cycloaddition 'click' reaction (CuAAC). For this purpose, azido-functional polypropylene is prepared by nucleophilic substitution of chlorine groups of PP-Cl with azidotrimethylsilane-tetrabutylammonium fluoride. Whereas, the clickable alkyne end-functional PEG and PCL are independently synthesized by esterification reaction of poly(ethylene glycol) methyl ether with 4-pentyonic acid at room temperature and ring-opening polymerization of ε-caprolactone using stannous octoate as catalyst and propargyl alcohol as initiator. Finally, the corresponding graft copolymers, PP-g-PEG and PP-g-PCL, with different surface properties were successfully synthesized by CuAAC 'click' reaction under mild condition. Spectral, chromatographic and thermal analyses at various stages prove the formation of desired polypropylene-based graft copolymers with well-defined properties. Furthermore, the water contact angle values of PP-Cl, PP-g-PEG and PP-g-PCL are found as 90±1°, 78±1.8° and 83±2.1°, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.