The collapse of the Soufrière Hills Volcano lava dome on Montserrat in July 2003 is the largest such event worldwide in the historical record. Here we report on borehole dilatometer data recording a remarkable and unprecedented rapid (∼600s) pressurisation of a magma chamber, triggered by this surface collapse. The chamber expansion is indicated by an expansive offset at the near dilatometer sites coupled with contraction at the far site. By analyzing the strain data and using added constraints from experimental petrology and long‐term edifice deformation from GPS geodesy, we prefer a source centered at approximately 6 km depth below the crater for an oblate spheroid with overpressure increase of order 1 MPa and average radius ∼1 km. Pressurisation is attributed to growth of 1–3% of gas bubbles in supersaturated magma, triggered by the dynamics of surface unloading. Recent simulations demonstrate that pressure recovery from bubble growth can exceed initial pressure drop by nearly an order of magnitude.
[1] The SEA-CALIPSO experiment in December 2007 incorporated a sea-based airgun source, and seismic recorders both on Montserrat and on the adjacent sea floor. A high quality subset of the data was used for a first arrival P-wave velocity tomographic study. A total of more than 115,000 traveltime data from 4413 airgun shots, and 58 recording stations, were used in this highresolution tomographic inversion. The experiment geometry limited the depth of well resolved structures to about 5 km. The most striking features of the tomography are three relatively high velocity zones below each of the main volcanic centers on Montserrat, and three low velocity zones flanking Centre Hills. We suggest that the high velocity zones represent the solid andesitic cores of the volcano complexes, characterized by wave speeds faster than adjacent volcaniclastic material. The low velocity zones may reflect porous volcaniclastic material and/or alteration by formerly active hydrothermal systems.Citation: Shalev, E., et al. (2010), Three-dimensional seismic velocity tomography of Montserrat from the SEA-CALIPSO offshore/onshore experiment, Geophys. Res. Lett., 37, L00E17,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.