Field-enhanced metal-induced solid phase crystallization (FE-MISPC) of amorphous silicon is scaled down to nanoscale dimensions by using a sharp conductive tip in atomic force microscopy (AFM) as one of the electrodes. The room temperature process is driven by the electrical current of the order of 100 pA between the tip and the bottom nickel electrode. This results in energy transfer rates of 30-50 nJ s(-1). Amplitude of the current is limited by a MOSFET transistor to avoid electrical discharge from parasitic parallel capacitance. Limiting the current amplitude and control of the transferred energy (approximately 100 nJ) enables formation of silicon crystals with dimensions smaller than 100 nm in the amorphous film. Formation of the nanocrystals is localized by the AFM tip position. The presence of nanocrystals is detected by current-sensing AFM and independently corroborated by micro-Raman spectroscopy. The nanocrystal formation is discussed based on a model considering microscopic electrical contact, thermodynamics of crystallization and silicide formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.