In mammals, the release from growth-inhibiting conditions results in catch-up growth. To investigate animal evidence for whether prenatal dexamethasone (DEX) treatment leads to the development of growth restriction especially reduced mineralization of skeleton, and release from it leads to the phenomenon of catch-up, piglets were prenatally exposed to DEX (3.0 mg/sow per day(-2)) during the last 24 days of prenatal life and tested further in two different ways: discontinued at birth and continued administration of DEX (0.5 mg/kg day(-2)) to piglets through 30 days of neonatal life. Using dual energy X-ray absorptiometry methods, bone mineral density (BMD) and bone mineral content (BMC) were measured. The three-point bending test was applied to determine the mechanical properties of the bones. Furthermore, geometric properties of the bones were assessed. Serum concentration of osteocalcin (OC) was determined. Histomorphological analysis of the ribs was also performed. The consequences of neonate DEX treatment and in utero DEX exposure were reflected in a dramatic decrease of BMD, BMC and blood serum OC concentration and geometric parameters of piglets' bones. Prenatal action of DEX during the last 24 days of pregnancy resulted in continued neonatal modification of bone tissues, thus diminishing bone quality, and negatively influenced structural development and mechanical properties, finally increasing the risk of fractures of ribs and limb bones. Prenatal DEX treatment limited to the last 24 days of foetal life did not reduce the term birth weight and the growth of suckling piglets followed up to 30 days of neonatal life, and catch-up in bone mineralization did not occur.
The bone mineral density and mechanical and geometric properties of humeri indicate an inverse effect of maternal separate or simultaneous administration of AKG and Dex to sows on bone development during the last 24 days of prenatal life.
The objective of the study was to evaluate the effect of denervation and alpha-ketoglutarate (AKG) administration on the development of osteopenia in the turkey radius. At 22 d of age, all turkeys were subjected to neurectomy of the right radius. Control turkeys were given a saline solution into the crop each day for 97 d. Experimental turkeys were given 0.4 g of AKG/kg of BW into the crop each day. After 98 d, BW was not affected by the AKG treatment. Volumetric bone mineral density of the radius was measured by quantitative computed tomography. Mechanical properties were tested using a 3-point bending test. Cross-sectional area, second moment of inertia, and mean relative wall thickness were measured as well. Amino acid concentrations were assessed with the use of ion-exchange chromatography. Denervation had a negative effect on all bone characteristics that were measured except bone length. The AKG had a positive effect on all bone characteristics except bone length. Plasma concentrations of proline and leucine were increased by AKG, whereas concentrations of taurine and glutamine were decreased. The turkey radius appears to be a good model for studying osteopenia because its development can be affected by treatments such as denervation and AKG administration.
Partial surgical removal of the stomach (fundectomy, FX) leads to osteopenia in animals and humans. FX adversely affects the bone. 2-oxoglutaric acid is a precursor of glutamine and hydroxyproline--the most abundant amino acid of collagen. The aim of the study was to investigate the effects of 2-oxoglutaric acid on FX-evoked osteopenia in pigs. Eighteen castrated male pigs of the Puławska breed were used. Twelve pigs were subjected to FX and divided into two groups: FX + AKG (the AKG group; AKG at the daily dosage of 0.4 g/kg of body weight) and FX + Placebo (the FXC group; received CaCO(3) as placebo). Remaining six pigs were sham-operated (the SHO group). The pigs were euthanized at the age of 8 months and long bones were collected. Area bone mineral density (aBMD) and bone mineral content (BMC) were measured; morphology, geometry and biomechanical properties were determined. Moreover, the serum concentrations of selected hormones and one marker of bone metabolism were determined. FX caused osteopenia in the pigs and treatment with AKG greatly reduced these effects of FX in pigs. Negative effect of fundectomy on the skeletal system leading to decreased bone mass in pigs is associated with lowered body gain and activity of the gastric-hypothalamic-pituitary axis. Better definitions of each of the local and systemic hormonal and structural components associated with fundectomy-induced decreased bone mass that separately and together determine the whole bone properties may lead to identify opportunities for prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.