Big Data is unstructured data that overcome the processing complexity of conventional database systems. The dimensionality reduction approach, which is a fundamental technique for the large-scale dataprocessing, try to maintain the performance of the classifier while reduce the number of required features. The pedestrian data includes a number of features compare to the other data, so pedestrian detection is the complex task. The accuracy of detection and location directly affect the performance of the entire system. Moreover, the pedestrian based approaches mainly suffer from huge training samples and increase the computation complexity. In this paper, an efficient dimensionality reduction model and pedestrian data classification approach has been proposed. The proposed model has three steps Histogram of Oriented Gradients (HOG) descriptor used for feature extraction, Orthogonal Locality Preserving Projection (OLPP) approach for feature dimensionality reduction. Finally, the relevant features are forwarded to the Support Vector Machine (SVM) to classify the pedestrian data and non-pedestrian data. The proposed HOG+OLPP+SVM model performance was measured using evaluation metrics such as precision, accuracy, recall and f-measure. The proposed model used the Penn-Fudan Database and compare to the existing research the proposed model improved approximately 6% of pedestrian data classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.