MQXF is the Nb3Sn Low-β Quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 as part of an upgrade to increase the LHC integrated luminosity by about a factor of ten. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configuration, five short model magnets, called MQXFS, were fabricated, assembled and tested. The latest model, MQXFS6, uses a new powder-in-tube (PIT) superconducting wire, featuring a bundle barrier surrounding the filaments. The coil and the support structure were equipped with strain gauges and optical fibres to monitor strain during assembly, cool-down and excitation. In this paper we further develop the conventional azimuthal preload analysis and introduce a new set of tools for MQXF coil pack characterization which we use to analyse the behaviour of MQXFS6 room temperature preload and to reanalyse all the short models tested at CERN. A comparison is made between all the studied magnets revealing new characterizing preload parameters.
The CERN Large Hadron Collider (LHC) is envisioned to be upgraded in 2020 to increase the luminosity of the machine. The major upgrade will consist in replacing the NbTi quadrupole magnets of the interaction regions with larger aperture magnets. The Nb 3 Sn technology is the preferred option for this upgrade.
MQXF is the Nb3Sn Low-β quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configurations, five short model magnets, called MQXFS, were fabricated, assembled and tested. We compare the mechanical behavior of short model magnets using experimental data and new numerical models that take into account the measured coil sizes as a function of position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.