Acute kidney injury (AKI) affects roughly 25% of all recipients of deceased donor organs. The prevention of post-transplant AKI is still an unmet clinical need. We prospectively collected zero-hour, indication as well as protocol kidney biopsies from 166 allografts between 2011 and 2013. In this cohort eight cases with AKI and ten matched allografts without pathology serving as control group were identified with a follow-up biopsy within the first twelve days after engraftment. For this set the zero-hour and follow-up biopsies were subjected to genome wide microRNA and mRNA profiling and analysis, followed by validation in independent expression profiles of 42 AKI and 21 protocol biopsies for strictly controlling the false discovery rate. Follow-up biopsies of AKI allografts compared to time-matched protocol biopsies, further baseline adjustment for zero-hour biopsy expression level and validation in independent datasets, revealed a molecular AKI signature holding 20 mRNAs and two miRNAs (miR-182-5p and miR-21-3p). Next to several established biomarkers such as lipocalin-2 also novel candidates of interest were identified in the signature. In further experimental evaluation the elevated transcript expression level of the secretory leukocyte peptidase inhibitor (SLPI) in AKI allografts was confirmed in plasma and urine on the protein level (p<0.001 and p = 0.003, respectively). miR-182-5p was identified as a molecular regulator of post-transplant AKI, strongly correlated with global gene expression changes during AKI. In summary, we identified an AKI-specific molecular signature providing the ground for novel biomarkers and target candidates such as SLPI and miR-182-5p in addressing AKI.
SUMMARYPeriodic limb movements in sleep (PLMS) is prevalent among dialysed patients and is associated with increased risk of mortality. Our study aimed to determine the prevalence of this disease in a sample of transplanted and waiting-list haemodialysed patients. One hundred transplanted and 50 waiting-list patients underwent polysomnography. Moderate and severe diseases were defined as periodic limb movements in sleep index (PLMSI) higher than 15 and 25 events h )1 , respectively. The 10-year coronary heart disease risk was estimated for all patients using the Framingham Score. Moreover, the 10-year estimated risk of stroke was calculated according to the modified version of the Framingham Stroke Risk Profile. PLMS was present in 27% of the transplanted and 42% of the waiting-list group (P = 0.094); the proportion of severe disease was twice as high in waitinglist versus transplanted patients (32 versus 16%, P = 0.024). Patients with severe disease had a higher 10-year estimated risk of stroke in the transplanted group [10 (7-17) versus 5 (4-10); P = 0.002] and a higher 10-year coronary heart disease risk in both the transplanted [18 (8-22) versus 7 (4-14); P = 0.002], and the waiting-list groups [11 (5-18) versus 4 (1-9); P = 0.032]. In multivariable linear regression models the PLMSI was associated independently with the Framingham cardiovascular and cerebrovascular scores after adjusting for important covariables. Higher PLMSI is an independent predictor of higher cardiovascular and cerebrovascular risk score in patients with chronic kidney disease. Severe PLMS is less frequent in kidney transplant recipients compared to waiting-list dialysis patients.
Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two-dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell-specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three-dimensional (3D) culture systems in pharmaceutical research. Isolated primary rat hepatocytes were cultured on collagen-coated nanofibrous scaffolds for 7 days. Cell loading efficiency was quantified via DNA content measurement. Cell viability and presence of liver-cell-specific functions (albumin secretion, glycogen storage capacity) were evaluated. The activity of liver-specific factors was analyzed by immunofluorescent staining. RNA was isolated to establish quantitative real-time PCR. Our results indicate that primary rat hepatocytes cultured on nanofibrous scaffolds revealed high viability and well-preserved glycogen storage. Albumin secretion was existent during the entire culture period. Hepatocytes remain HNF-4 positive, indicating highly preserved cell differentiation. Aggregated hepatocytes re-established positive signaling for Connexin 32, a marker for differentiated hepatocyte interaction. ZO-1-positive hepatocytes were detected indicating formation of tight junctions. Expression of cytochrome isoenzymes was inducible. Altogether the data suggest that nanofibrous scaffolds provide a good in vitro microenvironment for neo tissue regeneration of primary rat hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.