The relationship between coronal mass ejections (CMEs) and Forbush decreases (FDs) has been investigated in the past. But the selection of both solar events are difficult. Researchers have developed manual and automated methods in efforts to identify CMEs as well as FDs. While scientists investigating CMEs have made significant advancement, leading to several CME catalogues, including manual and automated events catalogues, those analyzing FDs have recorded relatively less progress. Till date, there are no comprehensive manual FD catalogues, for example. There are also paucity of automated FD lists. Many investigators, therefore, attempt to manually select FDs which are subsequently used in the analysis of the impact of CMEs on galactic cosmic-ray (GCR) flux depressions. However, some of the CME versus FD correlation results might be biased since manual event identification is usually subjective, unable to account for the presence of solar-diurnal anisotropy which characterizes GCR flux variations. The current paper investigates the relation between CMEs and FDs with emphasis on accurate and careful Forbush event selection.
Strange Nuggets are believed to be among the relics of the early universe. They appear as dark matter due to their low charge-to-mass ratio. Their distribution is believed to be the same as that of dark matter. As such, they could be accreted by high magnetic field objects and their collisions with pulsars are inevitable. Pulsar glitches are commonly seen as sudden spin-ups in pulsar frequency. It is still an open debate with regard to mechanisms giving rise to such a phenomenon. However, there is a class of sudden changes in pulsar spin frequency known as microglitches. These event are characterized by sudden small change in pulsar spin frequency (δν/ν ≈ ±10 −9). Clearly, the negative signature seen in some of the events is inconsistent with the known glitch mechanisms. In this analysis, we suggest that accretion of strange nuggets with pulsars could readily give rise to microglitch events. The signature of the events depends on the energy of the strange nuggets and line of interaction.
Short-term rapid depressions in Galactic cosmic ray (GCR) flux, historically referred to as Forbush decreases (FDs), have long been recognized as important events in the observation of cosmic ray (CR) activity. Although theories and empirical results on the causes, characteristics, and varieties of FDs have been well established, detection of FDs, from either isolated detectors' or arrays of neutron monitor data, remains a subject of interest. Efforts to create large catalogues of FDs began in the 1990s and have continued to the present. In an attempt to test some of the proposed CR theories, several analyses have been conducted based on the available lists. Nevertheless, the results obtained depend on the FD catalogues used. This suggests a need for an examination of consistency between FD catalogues. This is the aim of the present study. Some existing lists of FDs, as well as FD catalogues developed in the current work, were compared, with an emphasis on the FD catalogues selected by the global survey method (GSM). The Forbush effects and interplanetary disturbances database (FEID), created by the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation Russian Academy of Sciences (IZMIRAN), is the only available comprehensive and up to date FD catalogue. While there are significant disparities between the IZMIRAN FD and other event lists, there is a beautiful agreement between FDs identified in the current work and those in the FEID. This may be a pointer to the efficiency of the GSM and the automated approach to FD event detection presented here.
We use the distributions of spectral indices (αv ) of a large homogenous sample of Fermi-detected blazars to re-investigate the relationship between flat spectrum radio quasars (FSRQs) and subclasses of BL Lac objects (BL Lacs). We compute the broadband synchrotron and Compton spectral indices from radio-to-X-ray and X-ray to y-ray bands, respectively. Analyses of our data show continuity in the distributions of the spectral indices from FSRQs to HSP through LSP and ISP subclasses of BL Lacs. We find from y-ray luminosity distribution that the jetted radio galaxies form the low-luminosity tail of the distribution, which is suggestive that the sequence can be extended to the young jetted galaxy populations. We observe a significant difference in the shape of Compton and synchrotron spectra: significant anti-correlation (r ∼−0.80) exists between the broadband Compton and synchrotron spectral indices. Furthermore, the broadband spectral indices vary significantly with redshift (z) at low redshift (z < 0.3) and remain fairly constant at high (z ≥ 0.3) redshift. The trend of the variations suggests a form of evolutionary connection between subclasses of blazars. Thus, while selection effect may be significant at low redshift, evolutionary sequence can also be important. Our results are not only consistent with a unified scheme for blazars and their young jetted galaxy counterparts but also suggest that the broadband spectral sequence of blazars is not a secondary effect of redshift dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.