Secretion of periplasmic alkaline phosphatase (PhoA) encoded by the gene constituent of plasmids and the peculiar properties of cell envelope biogenesis in Escherichia coli strains with controlled synthesis of individual membrane phospholipids have been studied. Alkaline phosphatase secretion across the cytoplasmic membrane declines, while secretion into the culture medium intensifies under changed metabolism. The composition of anionic membrane phospholipids changes due to inactivation of the pgsA gene or regulation of its expression by environmental factor, as well as in the absence of the pssA gene which is responsible for the synthesis of the precursor for zwitter-ionic phospholipidphosphatidylethanolamine. This correlates with intensified secretion of exopolysaccharides and lower content of lipopolysaccharide and lipoprotein which are responsible for barrier properties of the outer membrane. The results suggest a possible coupling of protein secretion with biogenesis of cell envelope components at a level of phospholipid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.