The N-terminal amino acid sequence (23 amino acid residues) and the amino acid composition of the extracellular bacteriolytic enzyme L1 of 21 kD from the bacterium Lysobacter sp. XL1 have been determined. The enzyme was hydrolyzed by trypsin, the resulting peptides were isolated, and their primary structures were determined. A high extent of homology (92%) of the N-terminal amino acid sequence and the primary structure of isolated peptides of the enzyme L1 (62 amino acid residues or 31% of protein sequence) to the corresponding sites of alpha-lytic proteinases (EC 3.4.21.12) of Lysobacter enzymogenes and Achromobacter lyticus was found. These data allowed identification of the endopeptidase L1 of Lysobacter sp. XL1 as alpha-lytic proteinase EC 3.4.21.12.
Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.