We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma fluxes expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and SiO 2 /Si (001) sample. Laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with YAG:Nd3+ laser having the pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. Depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of X-ray photoelectron spectroscopy (XPS) and Reflected Electron Energy Loss Spectroscopy (REELS) methods. Analysis of chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on local concentration of thorium atoms, the experimentally established band gaps were located in the range of 6.0 -9.0 eV. Theoretical studies of optical properties of the SiO 2 and ThO 2 crystalline systems have been performed by ab initio calculations within hybrid functional. Optical properties of the SiO 2 /ThO 2 composite were interpreted on the basis of Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in "hot" laser plasma at the early stages of expansion has been performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO 2 matrix can be useful for further research of low-lying isomeric transitions in 229 Th isotope with energy of 7.8 ± 0.5 eV.
Currently, an urgent task related to creating a nuclear frequency standard is the identification of a low‐lying nuclear state in the thorium‐229 isotope. Herein, a method for measuring the single‐photon energy during the decay of an isomeric thorium‐229 nucleus implanted in a wide‐gap dielectric SiO2 (Eg = 9 eV) is developed. The proposed method utilizes thin silicon oxide layers obtained by thermal oxidization of the pure silica wafers, which allows measurement of the energy of photons in the ultraviolet (UV) range using an electronic spectrometer. The modeling study of electronic state excitation is provided via UV radiation from Kr, Xe, and D resonance discharging lamps. The obtained spectra are analyzed, and a method for determining the UV photon's energy is proposed.
In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.