Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC 50 ~ 50 µM. In mice, ws-Lynx1 penetrated the bloodbrain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement 42) for the binding to the nAChR subunits, abolishes the Aβ 1-42 cytotoxic effect in the cultured cortical neurons (Thomsen et al., 2016), and prevents the long-term potentiation (LTP) blockade caused by Aβ 1-42 (Bychkov et al., 2018). Here, we investigated the ws-Lynx1 influence on cognitive processes in vivo and on the synaptic plasticity processes ex vivo. To model cognitive impairment associated with the loss of nAChR function, C57BL/6 mice were chronically treated with of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.
The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake "three-finger" neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nicotinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.
Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized β-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the β-structure were revealed: one large antiparallel β-sheet in Lypd6 and Lypd6b, and two β-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the β-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.
Lypd6 is a GPI-tethered protein from the Ly-6/uPAR family expressed in the brain. Lypd6 enhances the Wnt/β-catenin signaling, although its action on nicotinic acetylcholine receptors (nAChRs) have been also proposed. To investigate a cholinergic activity of Lypd6, we studied a recombinant water-soluble variant of the human protein (ws-Lypd6) containing isolated “three-finger” LU-domain. Experiments at different nAChR subtypes expressed in Xenopus oocytes revealed the negative allosteric modulatory activity of ws-Lypd6. Ws-Lypd6 inhibited ACh-evoked currents at α3β4- and α7-nAChRs with IC50 of ∼35 and 10 μM, respectively, and the maximal amplitude of inhibition of 30–50%. EC50 of ACh at α3β4-nAChRs (∼30 μM) was not changed in the presence of 35 μM ws-Lypd6, while the maximal amplitude of ACh-evoked current was reduced by ∼20%. Ws-Lypd6 did not elicit currents through nAChRs in the absence of ACh. Application of 1 μM ws-Lypd6 significantly inhibited (up to ∼28%) choline-evoked current at α7-nAChRs in rat hippocampal slices. Similar to snake neurotoxin α-bungarotoxin, ws-Lypd6 suppressed the long-term potentiation (LTP) in mouse hippocampal slices. Colocalization of endogenous GPI-tethered Lypd6 with α3β4- and α7-nAChRs was detected in primary cortical and hippocampal neurons. Ws-Lypd6 interaction with the extracellular domain of α7-nAChR was modeled using the ensemble protein-protein docking protocol. The interaction of all three Lypd6 loops (“fingers”) with the entrance to the orthosteric ligand-binding site and the loop C of the primary receptor subunit was predicted. The results obtained allow us to consider Lypd6 as the endogenous negative modulator involved in the regulation of the cholinergic system in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.