Abstract. Dense subgraph discovery is a key issue in graph mining, due to its importance in several applications, such as correlation analysis, community discovery in the Web, gene co-expression and protein-protein interactions in bioinformatics. In this work, we study the discovery of the top-k dense subgraphs in a set of graphs. After the investigation of the problem in its static case, we extend the methodology to work with dynamic graph collections, where the graph collection changes over time. Our methodology is based on lower and upper bounds of the density, resulting in a reduction of the number of exact density computations. Our algorithms do not rely on user-defined threshold values and the only input required is the number of dense subgraphs in the result (k). In addition to the exact algorithms, an approximation algorithm is provided for top-k dense subgraph discovery, which trades result accuracy for speed. We show that a significant number of exact density computations is avoided, resulting in efficient monitoring of the top-k dense subgraphs.
ABSTRACT:Recent research on the field of Building Information Modelling (BIM) technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS) BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD) systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS) able to store, organize and manage the overall amount of information within a single application, is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.