We present the Vegetation Photosynthesis and Respiration Model (VPRM), a satellite‐based assimilation scheme that estimates hourly values of Net Ecosystem Exchange (NEE) of CO2 for 12 North American biomes using the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), derived from reflectance data of the Moderate Resolution Imaging Spectroradiometer (MODIS), plus high‐resolution data for sunlight and air temperature. The motivation is to provide reliable, fine‐grained first‐guess fields of surface CO2 fluxes for application in inverse models at continental and smaller scales. An extremely simple mathematical structure, with minimal numbers of parameters, facilitates optimization using in situ data, with finesse provided by maximal infusion of observed NEE and environmental data from networks of eddy covariance towers across North America (AmeriFlux and Fluxnet Canada). Cross validation showed that the VPRM has strong prediction ability for hourly to monthly timescales for sites with similar vegetation. The VPRM also provides consistent partitioning of NEE into Gross Ecosystem Exchange (GEE, the light‐dependent part of NEE) and ecosystem respiration (R, the light‐independent part), half‐saturation irradiance of ecosystem photosynthesis, and annual sum of NEE at all eddy flux sites for which it is optimized. The capability to provide reliable patterns of surface flux for fine‐scale inversions is presently limited by the number of vegetation classes for which NEE can be constrained by the current network of eddy flux sites and by the accuracy of MODIS data and data for sunlight.
[1] The long-term resilience of Amazonian forests to climate changes and the fate of their large stores of organic carbon depend on the ecosystem response to climate and weather. This study presents 4 years of eddy covariance data for CO 2 and water fluxes in an evergreen, old-growth tropical rain forest examining the forest's response to seasonal variations and to short-term weather anomalies. Photosynthetic efficiency declined late in the wet season, before appreciable leaf litter fall, and increased after new leaf production midway through the dry season. Rates of evapotranspiration were inelastic and did not depend on dry season precipitation. However, ecosystem respiration was inhibited by moisture limitations on heterotrophic respiration during the dry season. The annual carbon balance for this ecosystem was very close to neutral, with mean net loss of 890 ± 220 kg C ha À1 yr À1 , and a range of À221 ± 453 (C uptake) to +2677 ± 488 (C loss) kg C ha À1 yr À1 over 4 years. The trend from large net carbon release in 2002 towards net carbon uptake in 2005 implies recovery from prior disturbance. The annual carbon balance was sensitive to weather anomalies, particularly the timing of the dry-to-wet season transition, reflecting modulation of light inputs and respiration processes. Canopy carbon uptake rates were largely controlled by phenology and light with virtually no indication of seasonal water limitation during the 5-month dry season, indicating ample supplies of plant-available-water and ecosystem adaptation for maximum light utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.