The temporal relationship between the solar wind and magnetospheric activity has been studied using 34 intervals of high time resolution IMP 8 solar wind data and the corresponding AL auroral activity index. The median values of the AL index for each interval were utilized to rank the intervals according to geomagnetic activity level. The linear prediction filtering technique was then applied to model magnetospheric response as measured by the AL index to the solar wind input function VB s. The linear prediction filtering routine produces a filter of time-lagged response coefficients which estimates the most general linear relationship between the chosen input and output parameters of the magnetospheric system. It is found that the filters are composed of two response pulses speaking at time lags of 20 and 60 min. The amplitude of the 60-min pulse is the larger for moderate activity levels, while the 20-min pulse is the larger for strong activity levels. A possible interpretation is that the 20-min pulse represents magnetospheric activity driven directly by solar wind coupling and that the 60-min pulse represents magnetospheric activity driven by the release of energy previously stored in the magnetotail. If this interpretation is correct, the linear filtering results suggest that both the driven and the unloading models of magnetospheric response are inportant facets of a more comprehensive response model.
Recent observations of magnetic field, plasma flow and energetic electron anisotropies in the magnetotail plasma sheet during substorms have provided strong support for the idea that a magnetospheric substorm involves the formation of a magnetic neutral line (the substorm neutral line) within the plasma sheet at XSM ~ --10RE to -25RE. An initial effect, in the tail, of the neutral line's formation is the severance of plasma sheet field lines to form a plasmoid, i.e., a closed magnetic loop structure, that is quickly (within 5-10 rain) ejected from the tail into the downstream solar wind. The plasmoid's escape leaves a thin downstream plasma sheet through which plasma and energetic particles stream continuously into the solar wind, often throughout the duration of the substorm's expansive phase. Southward oriented magnetic field threads this tailward-ftowing plasma but its detection, as an identifier of the occurrence of magnetic reconnection, is.made difficult by the thinness and turbulence of the downstream plasma sheet. The thinning of the plasma sheet downstream of the neutral line is observed, by satellites located anywhere but very close to the tail's midplane, as a plasma dropout. Multiple satellite observations of plasma droputs suggest that the substorm neutral line often extends across a large fraction (> 89 of the tail's breadth. Near the time of substorm recovery the substorm neutral line moves quickly tailward to a more distant location, progressively inflating the closed field lines earthward of it, to reform the plasma sheet.
Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max‐Planck‐Institut, Institut für Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi‐periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40° northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the manetopause but where the layer thickness has a large‐scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 RE. The duration of these periods is highly variable but is typically in the range of 2–5 min, corresponding to a distance along the magnetopause of the order of 3–8 RE. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is occasionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed in which the variable boundary layer thickness is produced by the Kelvin‐Helmholtz instability of the inner edge of the layer and in which eddy motion provides effective mixing within the layer.
Observations with the Los Alamos Scientific Laboratory (LASL) plasma probe and the Goddard Space Flight Center (GSFC) magnetometer on the IMP 6 satellite show that the magnetospheric boundary layer, first identified along the flanks of the magnetosphere, is also present at the magnetosphere's sunward surface. The magnetic field lines in this sunward sector of the boundary layer are closed, and the plasma flow has a component transverse to the field. These observations suggest that the boundary layer is a site of continual transfer of plasma, momentum and energy from the magnetosheath to the magnetosphere. These transfer processes supply plasma and magnetic field to the magnetotail. Also, they produce, indirectly, the dawn‐to‐dusk electric field across the polar cap, the field‐aligned currents that border the dayside polar cap, and the soft particle fluxes that characterize the cleft precipitation, including recently reported dawn‐dusk asymmetries of these fluxes. Magnetosheath plasma directly enters the outer few hundred to few thousand kilometers of the magnetosphere's surface to form the boundary layer. There it is enabled to flow across the magnetic field (and approximately parallel to the magnetosphere's surface) by becoming electrically polarized. Leakage of the polarization charge along magnetic field lines to the earth produces the dayside high latitude effects mentioned above. The polarizing current flowing across the boundary layer interacts with the magnetic field to oppose the boundary layer plasma flow, taking up its momentum. In this way the magnetic field lines are pulled downstream. The process described here is independent of the interplanetary magnetic field (IMF) and thus may constitute the principal transfer mechanism during prolonged periods of northward IMF when the magnetosphere is very quiet. It is not clear how the effects of southward IMF are superposed on this process.
A traveling compression region (TCR) is a several‐minute long compression of the lobe magnetic field produced by a plasmoid as it moves down the tail. They are generally followed by a longer interval of southward tilting magnetic fields. This study reports the first comprehensive survey of TCRs in the distant magnetotail. A total of 116 TCRs were identified in the ISEE 3 magnetic field observations. Of this population, 37 TCRs were observed to be separated by 30 min or more from any other TCR and are termed “isolated” events. “Paired” events are defined as two TCRs separated by less than 30 min. There were 36 such TCRs corresponding to 18 paired events. “Multiple” events were also observed in which more than two TCRs occurred in a series without a gap between TCRs of more than 30 min. The 11 multiple events identified in this study had an average of about four traveling compression regions each for a total of 43 TCRs. The mean amplitude, ΔB/B, and duration, ΔT, for all TCRs were found to be 7.6% and 158 s, respectively. TCRs occurring as isolated events were the largest (ΔB/B = 8.8% and ΔT = 218 s) and those associated with multiple events were the smallest (ΔB/B = 5.6% and ΔT = 84 s). The mean duration of the period of southward tilting Bz following isolated TCRs was 12.3 min. This time interval was found to be quite similar to the average spacing between TCRs in paired and multiple events, 11.2 and 10.2 min, respectively. TCR amplitude and duration were found to be independent of location within the tail lobes suggesting that the plasmoids which cause the TCRs maintain approximately constant volume and shape as they move down the tail. Mean plasmoid dimensions estimated from TCR duration and amplitude under the assumption of a quasi‐rigid magnetopause are 35 RE (length) × 15 RE (width) × 15 RE (height). Utilizing auroral kilometric radiation, the AL index, Pi 2 pulsations at two ground stations, and energetic particle data from three geosynchronous spacecraft, it is found that over 91% of the TCR events identified in this study followed substorm onsets or intensifications. The number of TCR events identified in this study are consistent with their release in association with a new substorm onset every 4‐6 hrs. The results of this study strongly suggest that the release of plasmoids down the tail near the time of expansion phase onset is an integral step in the substorm process and an important element in the substorm energy budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.